Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Ahead of print

Issues

Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies

Ahmed LotfyORCID iD: https://orcid.org/0000-0001-9928-0724 / Nourhan S. Ali
  • Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mai Abdelgawad
  • Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohamed Salama
  • Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansourah, Ad Daqahliyah, Egypt
  • Institute of Global Health and Human Ecology (IGHHE), American University in Cairo (AUC), Cairo, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-10-12 | DOI: https://doi.org/10.1515/revneuro-2019-0040

Abstract

Multiple sclerosis (MS) is a progressive and debilitating neurological condition in which the immune system abnormally attacks the myelin sheath insulating the nerves. Mesenchymal stem cells (MSCs) are found in most adult tissues and play a significant systemic role in self-repair. MSCs have promising therapeutic effects in many diseases, such as autoimmune diseases, including MS. MSCs have been tested in MS animal models, such as experimental autoimmune encephalomyelitis. Other studies have combined other agents with MSCs, genetically modified MSCs, or used culture medium from MSCs. In this review, we will summarize these studies and compare the main factors in each study, such as the source of MSCs, the type of animal model, the route of injection, the number of injected cells, and the mechanism of action.

Keywords: EAE; immunomodulation; mesenchymal stem cells; multiple sclerosis

References

  • Abramowski, P., Krasemann, S., Ernst, T., Lange, C., Ittrich, H., Schweizer, M., Zander, A.R., Martin, R., and Fehse, B. (2016). Mesenchymal stromal/stem cells do not ameliorate experimental autoimmune encephalomyelitis and are not detectable in the central nervous system of transplanted mice. Stem Cells Dev. 25, 1134–1148.CrossrefPubMedGoogle Scholar

  • Alchi, B., Jayne, D., Labopin, M., Demin, A., Sergeevicheva, V., Alexander, T., Gualandi, F., Gruhn, B., Ouyang, J., Rzepecki, P., et al. (2013). Autologous haematopoietic stem cell transplantation for systemic lupus erythematosus: data from the European Group for Blood and Marrow Transplantation registry. Lupus 22, 245–253.CrossrefGoogle Scholar

  • Anderson, P., Gonzalez-Rey, E., O’Valle, F., Martin, F., Oliver, F.J., and Delgado, M. (2017). Allogeneic adipose-derived mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by regulating self-reactive T cell responses and dendritic cell function. Stem Cells Int. 2017, 2389753.PubMedGoogle Scholar

  • Atkins, H.L. and Freedman, M.S. (2017). Five questions answered: a review of autologous hematopoietic stem cell transplantation for the treatment of multiple sclerosis. Neurotherapeutics 14, 888–893.PubMedCrossrefGoogle Scholar

  • Bai, L., Lennon, D.P., Eaton, V., Maier, K., Caplan, A.I., Miller, S.D., and Miller, R.H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203.PubMedCrossrefGoogle Scholar

  • Bai, L., Lennon, D.P., Caplan, A.I., DeChant, A., Hecker, J., Kranso, J., Zaremba, A., and Miller, R.H. (2012). Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models. Nat. Neurosci. 15, 862–870.PubMedCrossrefGoogle Scholar

  • Baldassari, L.E. and Cohen, J.A. (2018). Mesenchymal stem cell-derived neural progenitor cells in progressive multiple sclerosis: great expectations. EBioMedicine 29, 5–6.CrossrefPubMedGoogle Scholar

  • Benvenuto, F., Voci, A., Carminati, E., Gualandi, F., Mancardi, G., Uccelli, A., and Vergani, L. (2015). Human mesenchymal stem cells target adhesion molecules and receptors involved in T cell extravasation. Stem Cell Res. Ther. 6, 245.CrossrefGoogle Scholar

  • Bosca, I., Coret, F., Valero, C., Pascual, A.M., Magraner, M.J., Landete, L., and Casanova, B. (2008). Effect of relapses over early progression of disability in multiple sclerosis patients treated with beta-interferon. Mult. Scler. 14, 636–639.CrossrefPubMedGoogle Scholar

  • Cobo, M., Anderson, P., Benabdellah, K., Toscano, M.G., Munoz, P., Garcia-Perez, A., Gutierrez, I., Delgado, M., and Martin, F. (2013). Mesenchymal stem cells expressing vasoactive intestinal peptide ameliorate symptoms in a model of chronic multiple sclerosis. Cell Transplant. 22, 839–854.CrossrefGoogle Scholar

  • Cohen, J.A., Imrey, P.B., Planchon, S.M., Bermel, R.A., Fisher, E., Fox, R.J., Bar-Or, A., Sharp, S.L., Skaramagas, T.T., Jagodnik, P., et al. (2018). Pilot trial of intravenous autologous culture-expanded mesenchymal stem cell transplantation in multiple sclerosis. Mult. Scler. 24, 501–511.CrossrefPubMedGoogle Scholar

  • Confavreux, C. and Vukusic, S. (2006). Natural history of multiple sclerosis: a unifying concept. Brain 129, 606–616.PubMedCrossrefGoogle Scholar

  • Connick, P., Kolappan, M., Crawley, C., Webber, D.J., Patani, R., Michell, A.W., Du, M.Q., Luan, S.L., Altmann, D.R., Thompson, A.J., et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 11, 150–156.CrossrefPubMedGoogle Scholar

  • Constantin, G., Marconi, S., Rossi, B., Angiari, S., Calderan, L., Anghileri, E., Gini, B., Bach, S.D., Martinello, M., Bifari, F., et al. (2009). Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells 27, 2624–2635.CrossrefPubMedGoogle Scholar

  • Dahbour, S., Jamali, F., Alhattab, D., Al-Radaideh, A., Ababneh, O., Al-Ryalat, N., Al-Bdour, M., Hourani, B., Msallam, M., Rasheed, M., et al. (2017). Mesenchymal stem cells and conditioned media in the treatment of multiple sclerosis patients: clinical, ophthalmological and radiological assessments of safety and efficacy. CNS Neurosci. Ther. 23, 866–874.PubMedCrossrefGoogle Scholar

  • de Paula, A.S.A., Malmegrim, K.C., Panepucci, R.A., Brum, D.S., Barreira, A.A., Carlos Dos Santos, A., Araujo, A.G., Covas, D.T., Oliveira, M.C., Moraes, D.A., et al. (2015). Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin. Sci. (Lond.) 128, 111–120.PubMedCrossrefGoogle Scholar

  • Donders, R., Vanheusden, M., Bogie, J.F., Ravanidis, S., Thewissen, K., Stinissen, P., Gyselaers, W., Hendriks, J.J., and Hellings, N. (2015). Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant. 24, 2077–2098.PubMedCrossrefGoogle Scholar

  • Fisher-Shoval, Y., Barhum, Y., Sadan, O., Yust-Katz, S., Ben-Zur, T., Lev, N., Benkler, C., Hod, M., Melamed, E., and Offen, D. (2012). Transplantation of placenta-derived mesenchymal stem cells in the EAE mouse model of MS. J. Mol. Neurosci. 48, 176–184.CrossrefPubMedGoogle Scholar

  • Freedman, M.S., Bar-Or, A., Atkins, H.L., Karussis, D., Frassoni, F., Lazarus, H., Scolding, N., Slavin, S., Le Blanc, K., and Uccelli, A. (2010). The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis: consensus report of the International MSCT Study Group. Mult. Scler. 16, 503–510.CrossrefGoogle Scholar

  • Genc, B., Bozan, H.R., Genc, S., and Genc, K. (2019). Stem cell therapy for multiple sclerosis. Adv. Exp. Med. Biol. 1084:145–174.PubMedGoogle Scholar

  • Gerdoni, E., Gallo, B., Casazza, S., Musio, S., Bonanni, I., Pedemonte, E., Mantegazza, R., Frassoni, F., Mancardi, G., Pedotti, R., et al. (2007). Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann. Neurol. 61, 219–227.PubMedCrossrefGoogle Scholar

  • Giacoppo, S., Thangavelu, S.R., Diomede, F., Bramanti, P., Conti, P., Trubiani, O., and Mazzon, E. (2017). Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37. FASEB J. 31, 5592–5608.CrossrefGoogle Scholar

  • Gordon, D., Pavlovska, G., Glover, C.P., Uney, J.B., Wraith, D., and Scolding, N.J. (2008). Human mesenchymal stem cells abrogate experimental allergic encephalomyelitis after intraperitoneal injection, and with sparse CNS infiltration. Neurosci. Lett. 448, 71–73.CrossrefPubMedGoogle Scholar

  • Grigoriadis, N., Lourbopoulos, A., Lagoudaki, R., Frischer, J.M., Polyzoidou, E., Touloumi, O., Simeonidou, C., Deretzi, G., Kountouras, J., Spandou, E., et al. (2011). Variable behavior and complications of autologous bone marrow mesenchymal stem cells transplanted in experimental autoimmune encephalomyelitis. Exp. Neurol. 230, 78–89.CrossrefPubMedGoogle Scholar

  • Harris, V.K., Faroqui, R., Vyshkina, T., and Sadiq, S.A. (2012). Characterization of autologous mesenchymal stem cell-derived neural progenitors as a feasible source of stem cells for central nervous system applications in multiple sclerosis. Stem Cells Transl. Med. 1, 536–547.CrossrefPubMedGoogle Scholar

  • Harris, V.K., Stark, J., Vyshkina, T., Blackshear, L., Joo, G., Stefanova, V., Sara, G., and Sadiq, S.A. (2018). Phase I trial of intrathecal mesenchymal stem cell-derived neural progenitors in progressive multiple sclerosis. EBioMedicine 29, 23–30.PubMedCrossrefGoogle Scholar

  • Hou, Y., Heon Ryu, C., Jun, J.A., Kim, S.M., Jeong, C.H., and Jeun, S.S. (2014). Interferon beta-secreting mesenchymal stem cells combined with minocycline attenuate experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274, 20–27.PubMedCrossrefGoogle Scholar

  • Jadasz, J.J., Aigner, L., Rivera, F.J., and Kury, P. (2012). The remyelination Philosopher’s Stone: stem and progenitor cell therapies for multiple sclerosis. Cell Tissue Res. 349, 331–347.CrossrefPubMedGoogle Scholar

  • Jiang, H., Zhang, Y., Tian, K., Wang, B., and Han, S. (2017). Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci. Rep. 7, 41837.CrossrefPubMedGoogle Scholar

  • Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J.M., Kassis, I., Bulte, J.W., Petrou, P., Ben-Hur, T., Abramsky, O., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194.PubMedGoogle Scholar

  • Kassis, I., Grigoriadis, N., Gowda-Kurkalli, B., Mizrachi-Kol, R., Ben-Hur, T., Slavin, S., Abramsky, O., and Karussis, D. (2008). Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch. Neurol. 65, 753–761.PubMedGoogle Scholar

  • Kassis, I., Petrou, P., Halimi, M., and Karussis, D. (2013). Mesenchymal stem cells (MSC) derived from mice with experimental autoimmune encephalomyelitis (EAE) suppress EAE and have similar biological properties with MSC from healthy donors. Immunol. Lett. 154, 70–76.CrossrefPubMedGoogle Scholar

  • Khezri, S., Abtahi Froushani, S.M., and Shahmoradi, M. (2018). Nicotine augments the beneficial effects of mesenchymal stem cell-based therapy in rat model of multiple sclerosis. Immunol. Invest. 47, 113–124.CrossrefPubMedGoogle Scholar

  • Kim, M.J., Lim, J.Y., Park, S.A., Park, S.I., Kim, W.S., Ryu, C.H., andJeun, S.S. (2018). Effective combination of methylprednisolone and interferon beta-secreting mesenchymal stem cells in a model of multiple sclerosis. J. Neuroimmunol. 314, 81–88.CrossrefGoogle Scholar

  • Kurte, M., Bravo-Alegria, J., Torres, A., Carrasco, V., Ibanez, C., Vega-Letter, A.M., Fernandez-O’Ryan, C., Irarrazabal, C.E., Figueroa, F.E., Fuentealba, R.A., et al. (2015). Intravenous administration of bone marrow-derived mesenchymal stem cells induces a switch from classical to atypical symptoms in experimental autoimmune encephalomyelitis. Stem Cells Int. 2015, 140170.PubMedGoogle Scholar

  • Li, X.L., Zhang, Z.C., Zhang, B., Jiang, H., Yu, C.M., Zhang, W.J., Yan, X., and Wang, M.X. (2014). Atorvastatin calcium in combination with methylprednisolone for the treatment of multiple sclerosis relapse. Int. Immunopharmacol. 23, 546–549.CrossrefPubMedGoogle Scholar

  • Liao, W., Pham, V., Liu, L., Riazifar, M., Pone, E.J., Zhang, S.X., Ma, F., Lu, M., Walsh, C.M., and Zhao, W. (2016). Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhanced therapeutic efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials 77, 87–97.PubMedCrossrefGoogle Scholar

  • Liu, R., Zhang, Z., Lu, Z., Borlongan, C., Pan, J., Chen, J., Qian, L., Liu, Z., Zhu, L., Zhang, J., et al. (2013). Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev. 22, 1053–1062.PubMedCrossrefGoogle Scholar

  • Lunn, J.S., Sakowski, S.A., and Feldman, E.L. (2014). Concise review: stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 32, 1099–1109.CrossrefPubMedGoogle Scholar

  • Mahfouz, M.M., Abdelsalam, R.M., Masoud, M.A., Mansour, H.A., Ahmed-Farid, O.A., and Kenawy, S.A. (2017). The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. J. Biochem. Mol. Toxicol. 31, e21936.CrossrefGoogle Scholar

  • Mandoj, C., Renna, R., Plantone, D., Sperduti, I., Cigliana, G., Conti, L., and Koudriavtseva, T. (2015). Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci. Lett. 606, 156–160.CrossrefPubMedGoogle Scholar

  • Marin-Banasco, C., Benabdellah, K., Melero-Jerez, C., Oliver, B., Pinto-Medel, M.J., Hurtado-Guerrero, I., de Castro, F., Clemente, D., Fernandez, O., Martin, F., et al. (2017). Gene therapy with mesenchymal stem cells expressing IFN-β ameliorates neuroinflammation in experimental models of multiple sclerosis. Br. J. Pharmacol. 174, 238–253.PubMedCrossrefGoogle Scholar

  • Marzban, M., Mousavizadeh, K., Bakhshayesh, M., Vousooghi, N., Vakilzadeh, G., and Torkaman-Boutorabi, A. (2018). Effect of multiple intraperitoneal injections of human bone marrow Mesenchymal stem cells on cuprizone model of multiple sclerosis. Iran. Biomed. J. 22, 312–321.PubMedCrossrefGoogle Scholar

  • Meamar, R., Nematollahi, S., Dehghani, L., Mirmosayyeb, O., Shayegannejad, V., Basiri, K., and Tanhaei, A.P. (2016). The role of stem cell therapy in multiple sclerosis: an overview of the current status of the clinical studies. Adv. Biomed. Res. 5, 46.CrossrefPubMedGoogle Scholar

  • Merzaban, J.S., Imitola, J., Starossom, S.C., Zhu, B., Wang, Y., Lee, J., Ali, A.J., Olah, M., Abuelela, A.F., Khoury, S.J., et al. (2015). Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology 25, 1392–1409.CrossrefGoogle Scholar

  • Mikaeili Agah, E., Parivar, K., and Joghataei, M.T. (2014). Therapeutic effect of transplanted human Wharton’s jelly stem cell-derived oligodendrocyte progenitor cells (hWJ-MSC-derived OPCs) in an animal model of multiple sclerosis. Mol. Neurobiol. 49, 625–632.CrossrefGoogle Scholar

  • Mitra, N.K., Bindal, U., Eng Hwa, W., Chua, C.L., and Tan, C.Y. (2015). Evaluation of locomotor function and microscopic structure of the spinal cord in a mouse model of experimental autoimmune encephalomyelitis following treatment with syngeneic mesenchymal stem cells. Int. J. Clin. Exp. Pathol. 8, 12041–12052.Google Scholar

  • Moghadam, S., Erfanmanesh, M., and Esmaeilzadeh, A. (2017). Interleukin 35 and hepatocyte growth factor; as a novel combined immune gene therapy for multiple sclerosis disease. Med. Hypotheses 109, 102–105.PubMedCrossrefGoogle Scholar

  • Mohyeddin Bonab, M., Yazdanbakhsh, S., Lotfi, J., Alimoghaddom, K., Talebian, F., Hooshmand, F., Ghavamzadeh, A., and Nikbin, B. (2007). Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran. J. Immunol. 4, 50–57.Google Scholar

  • Naderi, N. (2015). The perspectives of mesenchymal stem cell therapy in the treatment of multiple sclerosis. Iran. J. Pharm. Res. 14, 1–2.PubMedGoogle Scholar

  • Orack, J.C., Deleidi, M., Pitt, D., Mahajan, K., Nicholas, J.A., Boster, A.L., Racke, M.K., Comabella, M., Watanabe, F., and Imitola, J. (2015). Concise review: modeling multiple sclerosis with stem cell biological platforms: toward functional validation of cellular and molecular phenotypes in inflammation-induced neurodegeneration. Stem Cells Transl. Med. 4, 252–260.CrossrefPubMedGoogle Scholar

  • Racosta, J.M. and Kimpinski, K. (2016). Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin. Auton. Res. 26, 23–31.CrossrefPubMedGoogle Scholar

  • Rafei, M., Birman, E., Forner, K., and Galipeau, J. (2009a). Allogeneic mesenchymal stem cells for treatment of experimental autoimmune encephalomyelitis. Mol. Ther. 17, 1799–1803.CrossrefGoogle Scholar

  • Rafei, M., Campeau, P.M., Aguilar-Mahecha, A., Buchanan, M., Williams, P., Birman, E., Yuan, S., Young, Y.K., Boivin, M.N., Forner, K., et al. (2009b). Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J. Immunol. 182, 5994–6002.CrossrefGoogle Scholar

  • Rajan, T.S., Giacoppo, S., Diomede, F., Ballerini, P., Paolantonio, M., Marchisio, M., Piattelli, A., Bramanti, P., Mazzon, E., and Trubiani, O. (2016). The secretome of periodontal ligament stem cells from MS patients protects against EAE. Sci. Rep. 6, 38743.CrossrefPubMedGoogle Scholar

  • Redondo, J., Sarkar, P., Kemp, K., Virgo, P.F., Pawade, J., Norton, A., Emery, D.C., Guttridge, M.G., Marks, D.I., Wilkins, A., et al. (2018). Reduced cellularity of bone marrow in multiple sclerosis with decreased MSC expansion potential and premature ageing in vitro. Mult. Scler. 24, 919–931.CrossrefPubMedGoogle Scholar

  • Riordan, N.H., Morales, I., Fernandez, G., Allen, N., Fearnot, N.E., Leckrone, M.E., Markovich, D.J., Mansfield, D., Avila, D., Patel, A.N., et al. (2018). Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J. Transl. Med. 16, 57.CrossrefPubMedGoogle Scholar

  • Rivera, F.J. and Aigner, L. (2012). Adult mesenchymal stem cell therapy for myelin repair in multiple sclerosis. Biol. Res. 45, 257–268.CrossrefPubMedGoogle Scholar

  • Sargent, A., Bai, L., Shano, G., Karl, M., Garrison, E., Ranasinghe, L., Planchon, S.M., Cohen, J., and Miller, R.H. (2017). CNS disease diminishes the therapeutic functionality of bone marrow mesenchymal stem cells. Exp. Neurol. 295, 222–232.CrossrefPubMedGoogle Scholar

  • Scolding, N.J., Pasquini, M., Reingold, S.C., and Cohen, J.A. (2017). Cell-based therapeutic strategies for multiple sclerosis. Brain 140, 2776–2796.CrossrefPubMedGoogle Scholar

  • Shalaby, S.M., Sabbah, N.A., Saber, T., and Abdel Hamid, R.A. (2016). Adipose-derived mesenchymal stem cells modulate the immune response in chronic experimental autoimmune encephalomyelitis model. IUBMB Life 68, 106–115.PubMedCrossrefGoogle Scholar

  • Shimojima, C., Takeuchi, H., Jin, S., Parajuli, B., Hattori, H., Suzumura, A., Hibi, H., Ueda, M., and Yamamoto, A. (2016). Conditioned medium from the stem cells of human exfoliated deciduous teeth ameliorates experimental autoimmune encephalomyelitis. J. Immunol. 196, 4164–4171.CrossrefPubMedGoogle Scholar

  • Shroff, G. (2018). A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning Adv. Appl. 11, 1–11.CrossrefGoogle Scholar

  • Siatskas, C. and Bernard, C.C. (2009). Stem cell and gene therapeutic strategies for the treatment of multiple sclerosis. Curr. Mol. Med. 9, 992–1016.CrossrefPubMedGoogle Scholar

  • Siatskas, C., Payne, N.L., Short, M.A., and Bernard, C.C. (2010). A consensus statement addressing mesenchymal stem cell transplantation for multiple sclerosis: it’s time! Stem Cell Rev. 6, 500–506.CrossrefGoogle Scholar

  • Singh, S.P., Jadhav, S.H., Chaturvedi, C.P., and Nityanand, S. (2017). Therapeutic efficacy of multipotent adult progenitor cells versus mesenchymal stem cells in experimental autoimmune encephalomyelitis. Regen. Med. 12, 377–396.CrossrefPubMedGoogle Scholar

  • Soundara Rajan, T., Giacoppo, S., Diomede, F., Bramanti, P., Trubiani, O., and Mazzon, E. (2017). Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis. Int. J. Immunopathol. Pharmacol. 30, 238–252.PubMedCrossrefGoogle Scholar

  • Strong, A.L., Bowles, A.C., Wise, R.M., Morand, J.P., Dutreil, M.F., Gimble, J.M., and Bunnell, B.A. (2016). Human adipose stromal/stem cells from obese donors show reduced efficacy in halting disease progression in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Stem Cells 34, 614–626.CrossrefPubMedGoogle Scholar

  • Tian, K.W., Zhang, Y.Y., Jiang, H., and Han, S. (2018). Intravenous C16 and angiopoietin-1 improve the efficacy of placenta-derived mesenchymal stem cell therapy for EAE. Sci. Rep. 8, 4649.CrossrefPubMedGoogle Scholar

  • Togha, M., Jahanshahi, M., Alizadeh, L., Jahromi, S.R., Vakilzadeh, G., Alipour, B., Gorji, A., and Ghaemi, A. (2017). Rapamycin augments immunomodulatory properties of bone marrow-derived mesenchymal stem cells in experimental autoimmune encephalomyelitis. Mol. Neurobiol. 54, 2445–2457.CrossrefPubMedGoogle Scholar

  • Torkaman, M., Ghollasi, M., Mohammadnia-Afrouzi, M., Salimi, A., and Amari, A. (2017). The effect of transplanted human Wharton’s jelly mesenchymal stem cells treated with IFN-gamma on experimental autoimmune encephalomyelitis mice. Cell. Immunol. 311, 1–12.PubMedCrossrefGoogle Scholar

  • Trubiani, O., Giacoppo, S., Ballerini, P., Diomede, F., Piattelli, A., Bramanti, P., and Mazzon, E. (2016). Alternative source of stem cells derived from human periodontal ligament: a new treatment for experimental autoimmune encephalomyelitis. Stem Cell Res. Ther. 7, 1.PubMedCrossrefGoogle Scholar

  • Uccelli, A. and Mancardi, G. (2010). Stem cell transplantation in multiple sclerosis. Curr. Opin. Neurol. 23, 218–225.CrossrefPubMedGoogle Scholar

  • Walczak, A., Siger, M., Ciach, A., Szczepanik, M., and Selmaj, K. (2013). Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 70, 1105–1109.CrossrefPubMedGoogle Scholar

  • Wang, X., Kimbrel, E.A., Ijichi, K., Paul, D., Lazorchak, A.S., Chu, J., Kouris, N.A., Yavanian, G.J., Lu, S.J., Pachter, J.S., et al. (2014). Human ESC-derived MSCs outperform bone marrow MSCs in the treatment of an EAE model of multiple sclerosis. Stem Cell Rep. 3, 115–130.CrossrefGoogle Scholar

  • Wang, D., Li, S.P., Fu, J.S., Bai, L., and Guo, L. (2016). Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis. Int. J. Dev. Neurosci. 49, 60–66.PubMedCrossrefGoogle Scholar

  • Wang, Y.L., Xue, P., Xu, C.Y., Wang, Z., Liu, X.S., Hua, L.L., Bai, H.Y., Zeng, Z.L., Duan, H.F., and Li, J.F. (2018). SPK1-transfected UCMSC has better therapeutic activity than UCMSC in the treatment of experimental autoimmune encephalomyelitis model of multiple sclerosis. Sci. Rep. 8, 1756.CrossrefPubMedGoogle Scholar

  • Wilkins, A., Kemp, K., Ginty, M., Hares, K., Mallam, E., and Scolding, N. (2009). Human bone marrow-derived mesenchymal stem cells secrete brain-derived neurotrophic factor which promotes neuronal survival in vitro. Stem Cell Res. 3, 63–70.CrossrefPubMedGoogle Scholar

  • Yamout, B., Hourani, R., Salti, H., Barada, W., El-Hajj, T., Al-Kutoubi, A., Herlopian, A., Baz, E.K., Mahfouz, R., Khalil-Hamdan, R., et al. (2010). Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study. J. Neuroimmunol. 227, 185–189.PubMedCrossrefGoogle Scholar

  • Yousefi, F., Ebtekar, M., Soleimani, M., Soudi, S., and Hashemi, S.M. (2013). Comparison of in vivo immunomodulatory effects of intravenous and intraperitoneal administration of adipose-tissue mesenchymal stem cells in experimental autoimmune encephalomyelitis (EAE). Int. Immunopharmacol. 17, 608–616.CrossrefPubMedGoogle Scholar

  • Yousefi, F., Ebtekar, M., Soudi, S., Soleimani, M., and Hashemi, S.M. (2016). In vivo immunomodulatory effects of adipose-derived mesenchymal stem cells conditioned medium in experimental autoimmune encephalomyelitis. Immunol. Lett. 172, 94–105.PubMedCrossrefGoogle Scholar

  • Yu, J.W., Li, Y.H., Song, G.B., Yu, J.Z., Liu, C.Y., Liu, J.C., Zhang, H.F., Yang, W.F., Wang, Q., Yan, Y.P., et al. (2016). Synergistic and superimposed effect of bone marrow-derived mesenchymal stem cells combined with fasudil in experimental autoimmune encephalomyelitis. J. Mol. Neurosci. 60, 486–497.PubMedCrossrefGoogle Scholar

  • Zafranskaya, M.M., Nizheharodova, D.B., Yurkevich, M.Y., Lamouskaya, N.V., Motuzova, Y.M., Bagatka, S.S., Ivanchik, H.I., and Fedulov, A.S. (2013). In vitro assessment of mesenchymal stem cells immunosuppressive potential in multiple sclerosis patients. Immunol. Lett. 149, 9–18.PubMedCrossrefGoogle Scholar

  • Zappia, E., Casazza, S., Pedemonte, E., Benvenuto, F., Bonanni, I., Gerdoni, E., Giunti, D., Ceravolo, A., Cazzanti, F., Frassoni, F., et al. (2005). Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106, 1755–1761.PubMedCrossrefGoogle Scholar

  • Zhu, J., Zhang, J., Li, Q., Du, Y., Qiao, B., and Hu, X. (2012). Transplanting of mesenchymal stem cells may affect proliferation and function of CD4(+)T cells in experimental autoimmune encephalomyelitis. Exp. Clin. Transplant. 10, 492–500.PubMedCrossrefGoogle Scholar

About the article

Received: 2019-03-24

Accepted: 2019-06-14

Published Online: 2019-10-12


Conflicting interest statement: The authors declare no conflict of interest.


Citation Information: Reviews in the Neurosciences, 20190040, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2019-0040.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in