Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reports on Geodesy and Geoinformatics

(formerly: Reports on Geodesy); The Journal of Warsaw University of Technology

2 Issues per year

Open Access
Online
ISSN
2391-8152
See all formats and pricing
More options …

Evaluating the Accuracy of Determining Coordinates of a Corner of a Building Measured in the RTN GNSS Mode, Having Applied the Innovative Algorithm of Vector Translation

Robert Krzyżek
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Department of Integrated Geodesy and Cartography 30 Mickiewicza Av., 30-059 Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-01 | DOI: https://doi.org/10.1515/rgg-2017-0002

Abstract

The study evaluates the accuracy of determining coordinates of a corner of a building measured in the RTN GNSS mode (Real Time Network Global Navigation Satellite System) using the method of line-line intersection and having applied the algorithm of vector translation, developed by the author. The performed analysis of accuracy proved a high precision in determining the points subjected to studies. An important factor in the formation of a mean error regarding the position of the corner of a building, having used the algorithm of vector translation, is the assumption of correctness of the reference points, i.e. the so-called base points, determined in the RTN GNSS mode. In this case, the base points take the role of measurement control points. The mean error of the position of the corner of a building, taking into account the innovative solution, is at the level of several centimeters. The study results presented in the article allow to positively evaluate the algorithm of vector translation in terms of accuracy of determining the position of a corner of a building, measured in real time.

Keywords: RTN GNSS; vector translation; measurement of building structures; innovative algorithm

References

  • Bakuła, M. (2013). Study of Reliable Rapid and Ultrarapid Static GNSS Surveying for Determination of the Coordinates of Control Points in Obstructed Conditions. Journal of Surveying Engineering,139(4), pp. 188-193. DOI: 10.1061/(ASCE)SU.1943-5428.0000109CrossrefGoogle Scholar

  • Dae Hee, W., Eunsung, L., Moonbeom, H., Sangkyung, S., Jiyun L., & Young Jae L. (2014). GNSS integration with vision-based navigation for low GNSS visibility conditions. GPS Solution, 18(2), pp. 177-187. DOI: 10.1007/s10291-013-0318-8CrossrefGoogle Scholar

  • Figurski, M., Bogusz, J., Bosy, J., Kontny, B., Krankowski, A., & Wielgosz, P. (2011). ASG+: project for improving Polish multifunctional precise satellite positioning system. Reports on Geodesy, 2(91), pp. 51-57Google Scholar

  • Gunter W, Hein. (2000). From GPS and GLONASS via EGNOS to Galileo - Positioning and Navigation in the Third Millennium. GPS Solutions, 3(4), pp. 39-47. DOI: 10.1007/PL00012814CrossrefGoogle Scholar

  • Krzyżek, R. (2014a). Reliability analysis of the results of RTN GNSS surveys of building structures using indirect methods of measurement. Geodesy and Cartography, 63(2), pp. 161-181. DOI: 10.2478/geocart-2014-0012CrossrefGoogle Scholar

  • Krzyżek, R. (2015a). Algorithm for modeling coordinates of corners of buildings determined with RTN GNSS technology using vector translation method. Artificial Satellites Journal of Planetary Geodesy, 50(3), pp. 115-125. DOI: 10.1515/arsa-2015-0009CrossrefGoogle Scholar

  • Krzyżek, R. (2015b). Mathematical analysis of the algorithms used in modernized methods of building measurements with RTN GNSS technology. Boletim de Ciências Geodésicas, 21(4), pp. 848-866Google Scholar

  • Krzyżek, R.(2015c). Modernization of the method of line-line intersection using RTN GNSS technology for determining the position of corners of buildings. Artificial Satellites Journal of Planetary Geodesy, 50(1), pp. 41-57.DOI: 10.1515/arsa-2015-0004CrossrefGoogle Scholar

  • Kyungho, Y., Sangkyung, S., Eunsung, L., Sanguk, L., Jaehoon, K., Ho-Jin, L., & Young Jae L. (2009). Availability assessment of GPS augmentation system using geostationary satellite and QZSS in Seoul Urban Area. Transactions of the Japan Society for Aeronautical and Space Sciences, 52(177), pp. 152-158. doi.org./102322/tjsass.52.152Google Scholar

  • MIA.(2011). Regulation of Minister of Interior and Administration - in case of technical standards of performing detailed surveys and working out and sending results of these surveys to National Geodetic and Cartographic Database (in Polish). Journal of Laws 263 (entry 1572), Warsaw: Government Legislation Centre.Google Scholar

  • Pelc-Mieczkowska, R. (2012). Analysis of GPS/RTK positioning reliability in hard observational conditions. Zeszyty Naukowe Politechniki Rzeszowskiej, 59(1/II), pp.217-226Google Scholar

  • Pirti, A., Yucel, M.,& Gumus, K. (2013). Testing Real Time Kinematics GNSS (GPS and GPS/GLONASS) methods in obstructed and unobstructed sites. Geodetski Vestnik, 57(3), pp. 498-512. DOI: 10.15292/geodetski-vestnik.2013.03.498-512.CrossrefGoogle Scholar

  • Wajda, S., Oruba, A.,& Leończyk, M. (2008). Technical details of establishing reference station network ASG-EUPOS. Paper presented at the Geoinformation Challenges, GIS Polonia 2008 Conference Proceedings, University of Silesia, Sosnowiec.Google Scholar

  • Xingxing, L., Maorong, G., Xiaolei, D., Xiaodong, R., Mathias, F., Jens, W., & Harald, S. (2015). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy, 89(6), pp. 607-635. DOI: 10.1007/s00190-015-0802-8.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-11-22

Accepted: 2017-01-17

Published Online: 2017-08-01

Published in Print: 2017-06-27


Citation Information: Reports on Geodesy and Geoinformatics, ISSN (Online) 2391-8152, DOI: https://doi.org/10.1515/rgg-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in