Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reports on Geodesy and Geoinformatics

(formerly: Reports on Geodesy); The Journal of Warsaw University of Technology

2 Issues per year

Open Access
Online
ISSN
2391-8152
See all formats and pricing
More options …

Verification and Updating of the Database of Topographic Objects with Geometric Information About Buildings by Means of Airborne Laser Scanning Data

PhD Eng. Małgorzata Mendela-Anzlik / Andrzej Borkowski
  • Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Grunwaldzka St. 53, 50-357 Wroclaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-01 | DOI: https://doi.org/10.1515/rgg-2017-0003

Abstract

Airborne laser scanning data (ALS) are used mainly for creation of precise digital elevation models. However, it appears that the informative potential stored in ALS data can be also used for updating spatial databases, including the Database of Topographic Objects (BDOT10k). Typically, geometric representations of buildings in the BDOT10k are equal to their entities in the Land and Property Register (EGiB). In this study ALS is considered as supporting data source. The thresholding method of original ALS data with the use of the alpha shape algorithm, proposed in this paper, allows for extraction of points that represent horizontal cross section of building walls, leading to creation of vector, geometric models of buildings that can be then used for updating the BDOT10k. This method gives also the possibility of an easy verification of up-to-dateness of both the BDOT10k and the district EGiB databases within geometric information about buildings. For verification of the proposed methodology there have been used the classified ALS data acquired with a density of 4 points/m2. The accuracy assessment of the identified building outlines has been carried out by their comparison to the corresponding EGiB objects. The RMSE values for 78 buildings are from a few to tens of centimeters and the average value is about 0,5 m. At the same time for several objects there have been revealed huge geometric discrepancies. Further analyses have shown that these discrepancies could be resulted from incorrect representations of buildings in the EGiB database.

Keywords: airborne laser scanning; Database of Topographic Objects; alpha shape

References

  • Albers, B., Kada, M. & Wichmann, A. (2016). Automatic extraction and regularization of building outlines from airborne LiDAR point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI(B3), 555-560Google Scholar

  • Bachofer, F. & Hochschild, V. (2015). A SVM-based approach to extract building footprints from Pléiades satellite imagery. The address: https://www.geotechrwanda2015.com/wp-content/uploads/2015/12/61_Felix-Bachofer.pdfGoogle Scholar

  • Borkowski A. & Jóźków, G. (2012). Accuracy Assessment of Building Models Created from Laser Scanning Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX-B3, 253-258, DOI: 10.5194/isprsarchives-XXXIX-B3-253-2012CrossrefGoogle Scholar

  • Burdeos, M.D., Makinano-Santillan, M. & Amora A.M. (2015). Automated building footprints extraction form DTM and DSM in ArcGIS. The address: http://publications.ccgeo.info/Paper_2015_36thACRS_THP3-59.pdfGoogle Scholar

  • Cheng, L., Gong, J., Chen, X. & Han, P. (2008). Building boundary extraction from high resolution imagery and LiDAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B3b), 693-698Google Scholar

  • Edelsbrunner, H., Kirkpatrick, David G. & Seidel, R. (1983). On the shape of a set of points in the plane. IEEE Transactions on Information Theory 29 (4), 551-559Google Scholar

  • Fayed, M. & Mouftah H.T. (2009). Localised alpha-shape computations for boundary recognition in sensor network. Ad Hoc Networks. 7, 1259-1269, DOI:10.1016/j.adhoc.2008.12.001CrossrefGoogle Scholar

  • Gotlib, D. (2013). Ogólna koncepcja, cel budowy i zakres informacyjny BDOT10k i BDOO, In: Olszewski R., Gotlib D. Rola bazy danych obiektów topograficznych w tworzeniu infrastruktury informacji przestrzennej w Polsce. Warszawa. Główny Urząd Geodezji i Kartografii, pp. 51-57Google Scholar

  • Grigillo, D. & Kanjir, U. (2012). Urban object extraction from digital surface model and digital aerial images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-3, 215-220Google Scholar

  • Hauglin, M. & Næsset, E. (2016). Detection and segmentation of small trees in the forest-tundra ecotone using airborne laser Canning. Remote Sensing, 8(407), 1-15.Google Scholar

  • Jarząbek-Rychard, M. & Borkowski, A. (2016). 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures. The ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 118, 1-12, DOI:10.1016/j.isprsjprs.2016.04.005CrossrefGoogle Scholar

  • Matikainen, L., Hyyppä, J.A, Markelin, L., Kaartinen, H. & Kaartinen, H. (2010). Automatic detection of buildings and changes in buildings for updating of maps. Remote Sensing, Vol. 2, 1217-1248Google Scholar

  • Martin, K., Pengson, LTO, Bernandez, G., Sinnaco, MJ, Soriano, MRS & Pascua, CS. (2014). Building footprint extraction and tree removal in LiDAR-derived digital elevation models. The address: http://www.a-a-rs.org/acrs/administrator/components/com_jresearch/files/publications/TU1-5-3.pdfGoogle Scholar

  • Mathworks.(2013).The address: http://www.mathworks.com/matlabcentral/fileexchange/28851-alpha-shapes,funkcjaalphavol.m, autor: Jonas Lundgren (access: 20.12.2013)Google Scholar

  • Mendela, M. (2015). Metodyka aktualizacji Bazy Danych Obiektów Topograficznych z wykorzystaniem danych lotniczego skaningu laserowego. The address: http://www.dbc.wroc.pl/dlibra/docmetadata?id=29887&from=publicationGoogle Scholar

  • Nex, F., Rupnik, E. & Remondino, F. (2013). Building footprints extraction from oblique imagery. ISPRS Journal of Photogrammetry and Remote Sensing, II-3/W3, 61-66Google Scholar

  • Orthuber, E. & Avbelj, J. (2015). 3D building re construction from LiDAR point clouds by adaptive dual contouring. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3/W4, 157-164Google Scholar

  • Pawłuszek, K. & Borkowski, A. (2016). Landslides identification using airborne laser scanning data derived topographic terrain attributes and support vector machine classification. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B8, 145-149, DOI:10.5194/isprsarchives-XLI-B8-145-2016CrossrefGoogle Scholar

  • Poloprutský, Z., Cejpová, M. & Němcová, J. (2016). Non-destructive survey of archeological sites using airborne laser scanning and geophysical applications. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,Vol. XLI-B5, 371-376Google Scholar

  • Rottensteiner, F. & Briese, C. (2002). A new method for building extraction in urban areas from high-resolution LiDAR data. The International Archives of Photogrammetry and Remote Sensing, XXXIV(3A), 295-301Google Scholar

  • Rottensteiner, F. (2008). Automated updating of building data bases from digital surface models and multi-spectral images: potential and limitations. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B3a), 265-270Google Scholar

  • Tomljenovic, I., Höfle, B., Tiede, D. & Blaschke, T. (2015). Building extraction from airborne laser scanning data: an analysis of the state of the art. Remote Sensing, 7(4), 3826-3862Google Scholar

  • Viterbi, A.J. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, Vol. 13 (2), 260-269.Google Scholar

  • Vosselman, G., Gorte, B.G.H. & Sithole, G. (2004). Change detection for updating medium scale maps using laser altimetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXV(B3), 207-212Google Scholar

  • Wang, J., Lehrbass, B. & Zeng, Ch. (2011). Urban mapping using LiDAR and reliefcorrected colour-infrared aerial images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIV, 1-4Google Scholar

  • Wei, S. (2014). Delineation of building footprint outlines derived from vertical structures in airborne LiDAR point clouds. The address: https://www.itc.nl/library/papers_2014/msc/gfm/sun.pdfGoogle Scholar

  • Wei, S. (2008). Building boundary extraction based on lidar point clouds data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B3b), 157-162Google Scholar

  • Yuan, J. (2016). Automatic building extraction in aerial scenes using convolutional networks. arXiv:1602.06564Google Scholar

  • Zhang, K., Yan, J., Chen, Schu-Ch. (2006). Automatic construction of building footprints from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, Vol.44 (9), 2523-2533Google Scholar

  • Zhao, J., You, S. & Huang, J. ( 2011). Rapid extraction and updating of road network from airborne LiDAR data. Proceedings of IEEE Applied Imagery Pattern Recognition Workshop (AIPR),1-7Google Scholar

About the article

Received: 2016-11-08

Accepted: 2017-02-03

Published Online: 2017-08-01

Published in Print: 2017-06-27


Citation Information: Reports on Geodesy and Geoinformatics, ISSN (Online) 2391-8152, DOI: https://doi.org/10.1515/rgg-2017-0003.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in