Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reports on Geodesy and Geoinformatics

(formerly: Reports on Geodesy); The Journal of Warsaw University of Technology

2 Issues per year

Open Access
See all formats and pricing
More options …

The New Approach of Using Image and Range Based Methods for Quality Control of Dimension Stone

Assist. Prof. Volodymyr Levytskyi
Published Online: 2017-08-01 | DOI: https://doi.org/10.1515/rgg-2017-0006


The basis for the quality control of commodity dimension stone blocks for mining industry is the study of fracturing. The identification of fracturing in rock masses is one of the most important aspects in rock mass modelling. Traditional methods for determination properties of fracturing are difficult and hazardous. This paper describes a new approach of fracturing identification, based on image and range data, which realized by image processing and special software. In this article describes a method using new computer algorithms that allow for automated identification and calculation of fracturing parameters. Different digital filters for image processing and mathematical dependences are analyzed. The digital imaging technique has the potential for being used in real time applications. The purpose of this paper is the accurate and fast mapping of fracturing in some walls of the Bukinsky gabbro deposit.

Keywords: dimension stone; fracturing; photogrammetry; image processing; quality control; mine surveying


  • Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), pp. 679-698.Google Scholar

  • Coggan, J.S., Wetherelt, A., Gwynn, X.P. & Flynn, Z.N. (2007). Comparison of handmapping with remote data capture systems for effective rock mass characterization. 11th Congress of the International Society for Rock Mechanics, 1, pp. 201-206.Google Scholar

  • Dare, P.M., Hanley, H.B., Fraser, C.S., Riedel, B. & Niemeier, W. (2002). An operational application of automatic feature extraction the measurement of cracks in concrete structures. Photogrammetric Record, 17(99), pp. 453-464.CrossrefGoogle Scholar

  • Delis P., Wojtkowska M., Nerc P., Ewiak I. & Lada A. (2016). Integration of geodata in documenting castle ruins. XXIII ISPRS CONGRESS, COMMISSION III. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41(B3), pp. 345-349. doi:CrossrefGoogle Scholar

  • Feng, Q.H. & Roshoff, K. (2004). In-Situ Mapping and Documentation of Rock Faces Using a Full Coverage 3D Laser Scanning Technique. International Journal of Rock Mechanics and Mining Science, 41(1), pp. 1-6.Google Scholar

  • Gonzalez, R.C. & Woods, R.E. (2008). Digital image processing (3rd edition). Upper Saddle River, NJ: Prentice-Hall.Google Scholar

  • González-Aguilera, D., López-Fernández, L., Rodriguez-Gonzalvez, P., Guerrero, D., Hernandez-Lopez, D., Remondino, F., Menna, F., Nocerino, E., Toschi, I., Ballabeni, A. & Gaiani, M. (2016). Development of an all-purpose free photogrammetric tool. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 41(B6), pp. 31-38. DOI: 10.5194/isprsarchives-XLI-B6-31-2016. CrossrefGoogle Scholar

  • Haneberg, W.C. (2008). Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States. Bull. Eng. Geol. Environ, 67(4), pp. 457-469.Web of ScienceCrossrefGoogle Scholar

  • Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40(3), pp. 283-353.Google Scholar

  • Kemeny, J., Mofya, E., Holmlund, J. & Ahlgren, S. (2002). Digital imaging for rock mass characterization. Proceedings of the 2nd Annual Conference on the Application of Geophysical and NDT Methodologies To Transportation Facilities and Infrastructure (Geophysics 2002), Los Angeles.Google Scholar

  • Kemeny, J. & Post, R. (2003). Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers and Geosciences, 29 (1), pp. 65-77. DOI: 10.1016/S0098-3004(02)00106-1.CrossrefGoogle Scholar

  • Lemy, F. & Hadjigeorgiou, J. (2003). Discontinuity trace map construction using photographs of rock exposures. International Journal of Rock Mechanics and Mining Sciences, 40(6), pp. 903-917.Google Scholar

  • Mohebbi, M., Yarahmadi Bafghi, A.R., Fatehi Marji M. & Gholamnejad J. (2017). Rock mass structural data analysis using image processing techniques (Case study: Choghart iron ore mine northern slopes). Journal of Mining & Environment, 8(1), pp. 61-74. DOI: 10.22044/jme.2016.629.CrossrefGoogle Scholar

  • Poropat, G.V. (2001). New methods for mapping the structure of rock masses. CSIRO Exploration and Mining, paper for Explo 2001, pp. 253-260.Google Scholar

  • Priest, S.D. (1993). Discontinuity analysis for rock engineering. Chapman & Hall, London, 473. Google Scholar

  • Sobolevskyi, R., Zuievska, N., Korobiichuk, V., Tolkach O. & Kotenko V. (2016). Cluster analysis of fracturing in the deposits of decorative stone for the optimization of the process of quality control of block raw material. Eastern- European Journal of Enterprise Technologies, 5(83), pp. 21-29. DOI: 10.15587/1729-4061.2016.80652.Google Scholar

  • Turanboy, A. & Ülker, E. (2010). A new approach to rapid 3D mapping of rock mass structure. Geotechnical Engineering, 163(6), pp. 321-331. DOI: 10.1680/geng.2010.163.6.321.CrossrefGoogle Scholar

  • Wang, P. & Huang, H. (2010). Comparison analysis on present image-based crack detection methods in concrete structures. 2010 3rd International Congress on Image and Signal Processing (CISP2010), 5, pp. 2530-2533.Google Scholar

  • Yamaguchi, T. & Hashimoto, S. (2009). Practical image measurement of crack width for real concrete structure. Electronics and Communications in Japan, 92(10), pp. 605-614.Google Scholar

  • Zawieska, D. & Markiewicz, J. (2015). Utilisation of laser scanning technology and digital images for measurements of industrial objects - a case study. Reports on Geodesy and Geoinformatics, 98(1). DOI: 10.2478/rgg-2015-0003.CrossrefGoogle Scholar

About the article

Received: 2017-02-13

Accepted: 2017-04-19

Published Online: 2017-08-01

Published in Print: 2017-06-27

Citation Information: Reports on Geodesy and Geoinformatics, Volume 103, Issue 1, Pages 66–77, ISSN (Online) 2391-8152, DOI: https://doi.org/10.1515/rgg-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in