Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reports on Geodesy and Geoinformatics

(formerly: Reports on Geodesy); The Journal of Warsaw University of Technology

2 Issues per year

Open Access
Online
ISSN
2391-8152
See all formats and pricing
More options …

Remote Sensing to Estimate Saturation Differences of Chosen Building Materials Using Terrestrial Laser Scanner

Ph.D. Czesław Suchocki
  • Corresponding author
  • Koszalin University of Technology, Faculty of Civil Engineering Environmental and Geodetic Sciences, Koszalin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D.Sc. Ph.D. Jacek Katzer
  • Koszalin University of Technology, Faculty of Civil Engineering Environmental and Geodetic Sciences, Koszalin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M.Sc. Arkadiusz Panuś
  • University of Warmia and Mazury in Olsztyn Faculty of Geodesy, Geospatial and Civil Engineering, Warmia and Mazury, Olsztyn , Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-01 | DOI: https://doi.org/10.1515/rgg-2017-0008

Abstract

Terrestrial Laser Scanner (TLS) method which is commonly used for geodetic applications has a great potential to be successfully harnessed for multiple civil engineering applications. One of the most promising uses of TLS in construction industry is remote sensing of saturation of building materials. A research programme was prepared in order to prove that harnessing TLS for such an application is viable. Results presented in the current paper are a part of a much larger research programme focused on harnessing TLS for remote sensing of saturation of building materials. The paper describes results of the tests conducted with an impulse scanner Leica C-10. Tests took place both indoors (in a stable lab conditions) and outdoors (in a real environment). There were scanned specimens of the most popular building materials in Europe. Tested specimens were dried and saturated (including capillary rising moisture). One of the tests was performed over a period of 95 hours. Basically, a concrete specimen was scanned during its setting and hardening. It was proven that absorption of a laser signal is influenced by setting and hardening of concrete. Outdoor tests were based on scanning real buildings with partially saturated facades. The saturation assessment was based on differences of values of intensity. The concept proved to be feasible and technically realistic.

Keywords: TLS; intensity; saturation; building materials

References

  • Blaskow, R., & Schneider, D. (2014). Analysis and correction of the dependency between laser scanner intensity values and range. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014.ISPRS Technical Commission V Symposium, 23 - 25 June, Riva del Garda, Italy, pp. 107-112, DOI:10.5194/isprsarchives-XL-5-107-2014.CrossrefGoogle Scholar

  • Bucksch, A., Lindenbergh, R.C., & Van Ree, J. (2007). Error budget of terrestrial laserscanning : Influence of the intensity remission on the scan quality, III International Scientific Congress Geo-Siberia, 23-27 April, Novosibirsk, DOI:10.5194/isprsarchives-XL-5-107-2014.CrossrefGoogle Scholar

  • Engström, T., & Johansson, M. (2009). The use of terrestrial laser scanning in archaeology Evaluation of a Swedish project, with two examples. Jurnal of Nordic Archaeological Science 16, pp. 3-13.Google Scholar

  • Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A., & Kukko A. (2011). Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity: Search for Correction Methods. Remote Sens. 3, pp. 2207-2221, DOI:10.3390/rs3102207.CrossrefGoogle Scholar

  • Katzer, J., & Kobaka, J. (2007). Assessing the strength of gothic brickwork, Restoration of Buildings and Monuments, Vol.13, No 4, 2007, pp. 265-275.Google Scholar

  • Katzer, J., & Maliszewski, G. (2007). Water Induced Corrosion of Silica Lime Brick Masonry, Restoration of Buildings and Monuments, Vol. 13, No. 2, 2007, pp. 109-116.Google Scholar

  • Kukko, A., Kaasalainen, S., & Litkey P. (2008). Effect of incidence angle on laser scanner intensity and surface data. Applied Optics Vol. 47, Issue 7, pp. 986-992 DOI:10.1364/AO.47.000986.CrossrefGoogle Scholar

  • Mill, T., Ellmann, A., Uueküla, U., & Joala V. (2011) Road surface surveying using terrestrial laser scanner and total station technologies. ENVIRONMENTAL ENGINEERING, The 8th International Conference, May 19-20, Vilnius, Lithuania, ISSN 2029-7092 online, pp. 1142-1147.Google Scholar

  • Oreni, D., Brumana, R., Banfi, F., Bertola, L., Barazzetti, L., Cuca, B., Previtali, M., &Google Scholar

  • Roncoroni F. (2014). Beyond Crude 3D Models: From Point Clouds to Historical ;Building Information Modelling via NURBS, Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection, LNCS 8740, pp. 166-175, 10.1007/978-3-319-13695-0_16.Google Scholar

  • Park, H.S., Lee, H.M., Adeli, H., & Lee, I. (2007). New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning, Computer-Aided Civil and Infrastructure Engineering, 22, pp. 19-30, DOI: 10.1111/j.1467-8667.2006.00466.x.CrossrefGoogle Scholar

  • Pfeifer, N., Höfle, B., Briese, C., Rutzinger, M., & Haring, A. (2008). Analysis of the backscattered energy in terrestrial laser scanning data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing. pp. 1045-1052 .Google Scholar

  • Sabatini, R., & Richardson, M. A., (2010). Airborne Laser Systems Testing and Analysis. RTO-AG-300-V26 NATO Research and Technology Organization, Vol. 26.Google Scholar

  • Sasidharan, S. (2016). A Normalization scheme for Terrestrial LiDAR Intensity Data by Range and Incidence Angle. International Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459, Volume 6, Issue 5, May, pp. 322-328.Google Scholar

  • Suchocki, C. Application of Terrestrial Laser Scanner in Cliff Shores Monitoring. Rocznik Ochrona Środowiska 2009, Vol 11, pp. 715-725.Google Scholar

  • Suchocki, C., & Katzer, J., (2016). An example of harnessing Terrestrial Laser Scanner for remote sensing of saturation of chosen building materials. Construction and Building Materials, 122, pp. 400-405. DOI: 10.1016/j.conbuildmat.2016.06.091.CrossrefGoogle Scholar

  • Suchocki, C. Wasilewski & A. Aksamitauskas C. (2008). Aplication of scanning technology in cliff shores monitoring. The 7th International Conference Environmental Engineering, Volume 3. May 22-23. Vilnius - Lithunia.Google Scholar

  • Szulwic, J., Tysiąc, P., &·Wojtowicz, A. (2016). Coastal Cliffs Monitoring and Prediction ;of Displacements Using Terrestial Laser Scanning. Chapter in book: 2016 Baltic Geodetic Congress (BGC Geomatics). June, pp.61-66, DOI: 10.1109/BGC.Geomatics.2016.20CrossrefGoogle Scholar

  • Tan, K., & Cheng, X. (2016). Correction of incidence Angle and distance effect on TLS intensity data based on reference targets. Remote Sens, 8, 251, DOI:10.3390/rs8030251.CrossrefGoogle Scholar

  • Tan, K., Cheng, X., Ju, Q., & Wu, S. (2016). Correction of Mobile TLS Intensity Data for Water Leakage Spots Detection in Metro Tunnels. IEEE Geoscience and Remote Sensing Letters PP(99), September. pp. 1711-1715 DOI: 10.1109/LGRS.2016.2605158.CrossrefGoogle Scholar

  • Van Ree, J.M. 2006. Determination of the precision and reliability parameters of terrestrial laser scanners by creating a practical experiment set-up. Master thesis. 2006.Google Scholar

  • Voegtle, T., Schwab, I., & Landes, T. (2008). Influences of different materials on the measurements of a terrestrial laser scanner. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5. Beijing. pp. 1061-1066.Google Scholar

  • Zaczek-Peplinska, J., Osińska-Skotak, K., & Gergont K. (2012). Możliwość wykorzystania zmian intensywności dobicia promienia laserowego do oceny stanu konstrukcji betonowej. Inżynieryjne zastosowania geodezji, Wydawnictwo Politechniki Poznańskiej.Google Scholar

  • Zygmunt, M., & Biłka, P. (2014). Analiza możliwości zastosowania naziemnego skaningu laserowego w kontroli i ocenie stanu technicznego budowli piętrzących wodę. Acta Sci. Pol., Formatio Circumiectus 13 (3). pp. 115-124 DOI: http://dx.doi.org/10.15576/ASP.FC/2014.13.3.115.CrossrefGoogle Scholar

About the article

Received: 2017-04-19

Accepted: 2017-05-26

Published Online: 2017-08-01

Published in Print: 2017-06-27


Citation Information: Reports on Geodesy and Geoinformatics, ISSN (Online) 2391-8152, DOI: https://doi.org/10.1515/rgg-2017-0008.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in