Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reports on Geodesy and Geoinformatics

(formerly: Reports on Geodesy); The Journal of Warsaw University of Technology

2 Issues per year

Open Access
See all formats and pricing
More options …

Investigation of Changes of the Kinematic Parameters of Antarctic Tectonic Plate Using Data Observations of Permanent GNSS Stations

Prof. Dr.habil. Kornylii Tretyak
  • Corresponding author
  • National University Lviv Polytechnic. Institute of Geodesy. 79013 Lviv, 12 Bandera street, Lviv, Ukraine
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ph.D. student, Al-Alusi Forat
  • National University Lviv Polytechnic. Institute of Geodesy. 79013 Lviv, 12 Bandera street, Lviv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ph.D., Yurii Holubinka
  • National University Lviv Polytechnic. Institute of Geodesy. 79013 Lviv, 12 Bandera street, Lviv, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-01 | DOI: https://doi.org/10.1515/rgg-2017-0010


The paper describes a modified algorithm of determination of the Euler pole coordinates and angular velocity of the tectonic plate, considering the continuous and uneven distribution of daily measurements of GNSS permanent stations. Using developed algorithm were determined the mean position of Euler pole and angular velocity of Antarctic tectonic plate and their annual changes. As the input data, we used the results of observations, collected on 28 permanent stations of the Antarctic region, within the period from 1996 to 2014.

Keywords: GNSS; Euler pole; Antarctic tectonic plate


  • Altamimi, Z., L. Métivier, & X. Collilieux (2012), ITRF2008 plate motion model, J.Geophys. Res., 117, B07402,Google Scholar

  • Argus, D. F., Gordon, R. G., & DeMets, C., (2011). Geologically current motion of 56 plates relative to the no-net-rotation reference frame. Geochemistry, Geophysics, Geosystems, vol.12, no.11, DOI: 10.1029/2011GC003751CrossrefGoogle Scholar

  • Argus, D.F. & R.G. Gordon, (1991). No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2039-2042.Google Scholar

  • Bowin, C. (2010). Plate tectonics conserves angular momentum, eEarth, 5, 1-20, DOI:10.5194/ee-5-1-2010.CrossrefGoogle Scholar

  • Berrocoso M., Fernández-Ros A., Prates G., García A. & Kraus S. (2016). Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula, Tectonophysics 666 (2016) 211-219.Web of ScienceGoogle Scholar

  • Capra A., Gandolfi S., Mancini F.,Sarti P. & Vittuari L. (2002),“VLNDEF project for crustal deformation control of northern Victoria land” AGS ’01 (Antarctic Geodesy Symposium), St.Petersburg, 2002, N.21, pp.8-10Google Scholar

  • Capra, A., Dubbini, M., Galeandro, A., Gusella, L., Zanutta, A., Casula, G., Negusini, M., Vittuari, L., Sarti, P., Mancini, F., Gandolfi, S., Montaguti, M. & Bitelli, G. (2008), VLNDEF project for geodetic infrastructure definition for Northern Victoria Land. Antarctica Geodetic and geophysical observation in Antarctica An overview in the IPY perspective, Springer, 2008, pp. 1-11Google Scholar

  • Dalziel, I.W.D., Smalley, R., Kendrick, E., Bevis, M., & Taylor, F.W. (2006) The West Antarctic GPS Network. GPS in the International Polar Year, The POLENET Project Workshop. Dresden, Germany. 04-06 October 2006.Google Scholar

  • Dietrich R. & Rulke A. (2008) A precise reference frame for antarcica from SCAR GPS campaing data and some geophysical implications Geodetic and geophysical observation in Antarctica An overview in the IPY perspective, Springer, pp. 1-11Google Scholar

  • Dietrich R., Dach R. & Engelhardt G. (2001). ITRF coordinates and plate velocities from GPS campaigns in Antarctica - an analysis based on different individual solutions. Journal of Geodesy Vol.74, No.11, 756-766.Google Scholar

  • Dietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller, H., Niemeier, W., Schenke, H. W. Seeber, G. (2004). Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global and Planetary Change, 42 (1), pp. 313-321. DOI: 10.1016/j.gloplacha.2003.12.003CrossrefGoogle Scholar

  • Donnellan, A. & Luyendyk B. (1999) GPS measurement of isostatic rebound and tectonic deformation in Marie Byrd Land, West Antarctica GPS99 and Asian Pacific Space Geodynamics Program, Abstracts, 1999, Japan, 07-15Google Scholar

  • Donnellana A. & Luyendyk Bruce P. (2004), GPS evidence for a coherent Antarctic plate and for postglacial rebound in Marie Byrd Land Global and Planetary Change, Vol. 42, pp. 305 - 311Google Scholar

  • Drewes, H. (2009). The Actual Plate Kinematic and Crustal Deformation Model APKIM2005 as basis for a non-rotating ITRF, Geodetic Reference Frames, H. Drewes (Ed.), IAG Symposia, 134, 95-99, Springer, DOI:10.1007/978-3-642-00860-3_15, 2009.CrossrefGoogle Scholar

  • Drewes, H., (1998). Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. In: M. Feissel (Ed.): Geodynamics, IAG Symposia, Springer 1998.Google Scholar

  • Drewes, H., & D. Angermann, (2001). The Actual Plate Kinematic and Crustal Deformation Model 2000 (APKIM2000) as a Geodetic Reference System, AIG 2001 Scientific Assembly, BudapestGoogle Scholar

  • International Earth Rotation Service [Electronic resource]: IERS. - link: https://www.iers.orgGoogle Scholar

  • Jiang Wei-Ping, (2009). New Model of Antarctic Plate Motion and Its Analysis. Chinese Journal of Geophysics Vol.52, No.1. 23-32.Google Scholar

  • Johnstone G. (2002) SCAR Geodetic Control Database, Antarctic Geodesy Symposium 2002 Wellington, New Zealand, 25-27Google Scholar

  • Konovalov G.V. & Mekkel A.M. (2009) Shkaly vremeni: istoriya, reglamentatsiya v rekomendatsiyakh MSE i voploshcheniyev modelyakh. Naukovі zapiski (Proceedings), 3 (11), 4 - 16.Google Scholar

  • Marchenko O. M., Tretyak K. R., Kulchyckyj A. Ya., Holubinka Yu. I., Marchenko D. O. amp; Tretyak N. P. (2012) Doslidzhennya hravitacijnoho polya, topohrafiyi okeanu ta ruxiv zemnoyi kory v rehioni Antarktyky. Lviv, Vydavnyctvo Lvivkoyi politexniky (Lviv Polytechnic Publisher), 306.Google Scholar

  • Nevada Geodetic Laboratory [Electronic resource]: NGL. - link: http://geodesy.unr.edu/index.phpGoogle Scholar

  • Nield Grace A., Barletta Valentina R., Bordoni Andrea, King Matt A., Whitehouse Pippa L., Clarke Peter J., Domack Eugene, Scambos Ted A. & Berthier Etienne (2014). Rapid bedrock uplift in the Antarctic Peninsula explained by viscoelastic response to recent ice unloading, Earth and Planetary Science Letters 397 (2014) 32-41Google Scholar

  • Pandul Y.S. (2010) Heodezycheskaya astronomyya prymenytelno k reshenyyu ynzhenerno-heodezycheskyx zadach. SPb. Polytexnyka (Polytechnic), 328. ISBN 978-5-7325-0924-3Google Scholar

  • Scientific Committee on Antarctic Research [Electronic resource]: SCAR http://www.scar.org/Google Scholar

  • Script Orbit and Permanent Array Center [Electronic resource]: SOPAC. - link: http://sopac.ucsd.edu/Google Scholar

  • Sella, G.F., T.H. Dixon, & A. Mao (2002). REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res., 107, B4, DOI:10.1029/2000JB000033, 2002.CrossrefGoogle Scholar

  • Sydorenkov N.S. (2004), Pryroda nestabylnostej vrashhenyya Zemly, Pryroda [Nature], 8, 8 - 18.Google Scholar

  • Tretyak K.R. & Holubinka Yu.I. (2006). Ocinka ta dyferenciaciya ruxiv Zemnoyi kory Antarktydy, UAZh, № 4-5, 72-83Google Scholar

  • Tretyak K.R. & Vovk A.I. (2016). Differentation of the rotational movements of the european continents earth crust. Acta Geodynamica et Geomaterialia, Vol. 13, No. 1 (181), 5 - 18. DOI: 10.13168/AGG.2015.0046CrossrefGoogle Scholar

  • Zharov V.Y. (2002). Sfericheskaya astronomiya, Moskva, 480.Google Scholar

  • Zotov L.V. (2005). Vrashcheniye Zemli:analiz variatsiy i ikh prognozirovaniye. Gosudarstvennyy astronomicheskiy institut im. P.K. Shternberga. MGU, g. Moskva.Google Scholar

About the article

Received: 2016-10-27

Accepted: 2017-06-14

Published Online: 2017-08-01

Published in Print: 2017-06-27

Citation Information: Reports on Geodesy and Geoinformatics, Volume 103, Issue 1, Pages 119–135, ISSN (Online) 2391-8152, DOI: https://doi.org/10.1515/rgg-2017-0010.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in