Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Romanian Journal of Internal Medicine

4 Issues per year

Open Access
Online
ISSN
2501-062X
See all formats and pricing
More options …

The Growing Family of Limb-Girdle Muscular Dystrophies: Old and Newly Identified Members

Alexandra Bastian
  • Corresponding author
  • “Colentina” University Hospital, Department of Pathology, Bucharest, Romania
  • University of Medicine and Pharmacy, Department of Pathology, Bucharest, Romania
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ V. Mageriu / Gianina Micu / Emilia Manole
  • “Victor Babeş” National Institute of Pathology, Molecular Biology Laboratory, Bucharest, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-07 | DOI: https://doi.org/10.1515/rjim-2015-0002

Abstract

Limb-girdle muscular dystrophies (LGMD) are an extremely heterogeneous and rapidly expanding group of diseases characterized by progressive weakness of pelvic, scapular and trunk muscles with sparing of facial and distal musculature in most of the subtypes, onset in childhood or in adults of both sexes, very variable clinical severity ranging from mild to severe phenotypes, some associated with cardio-pulmonary and extraskeletal impairment and high serum creatine-kinase (CK) levels. In the past years, huge advances have been recorded in the various identification methods and new distinct entities were discovered. However, it is not yet clear why some muscle groups are affected and others spared in a specific subtype of LGMD, why similar clinical pictures are associated with different genes and mutations, while the same gene or mutation may present with very various clinical phenotypes [1]. In this review we summarize the main aspects of positive and differential diagnosis in LGMD.

Abstract

Distrofiile musculare forma centurilor reprezintă un grup de afecţiuni extrem de heterogen şi în rapidă expansiune, caracterizate prin deficit muscular pelvin, scapular şi la nivelul trunchiului, fără afectarea musculaturii faciale şi distale în majoritatea subtipurilor de boală, cu debut în copilărie sau în perioada adultă la ambele sexe şi cu severitate clinică extrem de variabilă de la fenotipuri uşoare la forme severe, unele asociate cu afectare cardio-pulmonară şi extrascheletală şi niveluri foarte crescute ale creatin-kinazei serice. În ultimii ani s-au înregistrat progrese uriaşe ale diferitelor metode de identificare şi au fost descoperite noi entităţi distincte. Totuşi, încă nu este suficient de clar de ce există o afectare selectivă a unor grupe musculare cu lipsa de afectare a altora în diferitele subtipuri de boală şi de ce tablouri clinice similare se asociază cu gene şi mutaţii diferite, în timp ce aceleaşi gene şi chiar aceleaşi mutaţii se pot asocia cu fenotipuri foarte variate. În acest review sintetizăm principalele aspecte de diagnostic pozitiv şi diferenţial al distrofiilor musculare forma centurilor.

Keywords: Limb-girdle muscular dystrophies; calpain 3; dysferlin; anoctamin 5; γ; α; β and δ sarcoglycans.

References

  • 1. WICKLUND MP, KISSEL JT. The limb-girdle muscular dystrophies. Neurol Clin 2014; 32(3): 729-49.CrossrefGoogle Scholar

  • 2. WALTON J, NATRASS F. On the classification, natural history and treatment of the myopathies. Brain. 1954; 77:169-231.CrossrefGoogle Scholar

  • 3. BARESI R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skeletal Muscle. 2011; 1:24.Google Scholar

  • 4. MAHMOOD O, JIANG XM. Limb-girdle muscular dystrophies: Where next after six decades from the first proposal. Mol Med Rep, 2014; 9(5): 1515-1532.Google Scholar

  • 5. NIGRO V, SAVARESE M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myologica 2014; 32: 1-12.Google Scholar

  • 6. COTTA A, CARVALHO E, LOPES DA-CUNHA A, et al. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? Arq Neuropsiquiatr, 2014; 72(9): 721-734.CrossrefGoogle Scholar

  • 7. NORWOOD FL, HARLING C, CHINNERY PF, EAGLE M, BUSHBY K, STRAUB V. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain. 2009; 132: 3175-3186.CrossrefGoogle Scholar

  • 8. GOMEZ-DIAZ B, ROSAS-VARGAS H, ROQUE-RAMIREZ B, et al. Immunodetection analysis of muscular dystrophies in Mexico. Muscle Nerve. 2012; 45: 338-345.CrossrefGoogle Scholar

  • 9. DINIZ G, ERYAŞAR G, TÜRE S, et al. A regional panorama of dysferlinopathies. Turk Patoloji Derg. 2012; 28: 259-265.Google Scholar

  • 10. FANIN M, NASCIMBENI AC, FULIZIO L, et al. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord 2005; 15:218-24.CrossrefGoogle Scholar

  • 11. STEHLÍKOVÁ K, SKÁLOVÁ D, ZÍDKOVÁ J, MRÁZOVÁL, MAZANEC R, VOHANKA S, HABERLOVA J, HERMANOVA M, ZAMECNIK J, SOUCEK O, OŠLEJŠKOVÁ H, DVOŘÁČKOVÁ N, SOLAROVA P, FAJKUSOVÁ L. Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic. BMC Neurology 2014, 14:154.CrossrefGoogle Scholar

  • 12. ZATZ M, DE PAULA F, STARLING A, VAINZOF M. The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscular disorders, 2003; 13: 532-544.Google Scholar

  • 13. PENISSON-BESNIER I, HACKMAN P, SUOMINEN T, et al. Myopathies caused by homozygous titin mutations: limb-girdle muscular dystrophy 2J and variations of phenotype. J Neurol Neurosurg Psychiatry 2010; 81:1200-2.CrossrefGoogle Scholar

  • 14. HALLIDAY W, GREENBERG CR, WROGEMANN K, et al. Genetic heterogeneity of limb girdle muscular dystrophy in Manitoba Hutterites. Am J Hum Genet 1998; 63 (Suppl): A 392.Google Scholar

  • 15. SHOKEIR MH, KOBRINSKY NL. Autosomal recessive muscular dystrophy in Manitoba Hutterites. Clin Genet. 1976; 9(2): 197-202.Google Scholar

  • 16. WEILER T, GREENBERG CR, ZELINSKI T, et al. Limb Girdle Muscular Dystrophy in Manitoba Hutterites maps to chromosome region 9q31-q33: evidence for another LGMD locus. Am J Hum Genet. 1998; 63: 140-7.CrossrefGoogle Scholar

  • 17. REILICH P, KRAUSE S, SCHRAMM N, et al. A novel mutation in the myotilin gene (MYOT) causes a severe form of limb girdle muscular dystrophy 1A (LGMD1A). J Neurol 2011; 258:1437-44.CrossrefGoogle Scholar

  • 18. HAUSER MA, HORRIGAN SK, SALMIKANGAS P, et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet, 2000; 9:2141-7.CrossrefGoogle Scholar

  • 19. SALMIKANGAS P, VAN DER VEN PF, LALOWSKI M, TAIVAINEN A, ZHAO F, SUILA H, SCHRÖDER R, LAPPALAINEN P, FÜRST DO, CARPÉN O. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum Mol Genet. 2003; 12(2): 189-203.CrossrefGoogle Scholar

  • 20. MUCHIR A, BONNE G, VAN DER KOOI AJ, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb-girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000; 9:1453-9.CrossrefGoogle Scholar

  • 21. LAVAL SH, BUSHBY KM. Limb-girdle muscular dystrophies-from genetics to molecular pathology. Neuropathol Appl Neurobiol. 2004; 30(2):91-105.CrossrefGoogle Scholar

  • 22. POLITANO L, CARBONI N, MADEJ-PILARCZYK A, et al. Advances in basic and clinical research in laminopathies. Acta Myol, 2013; 32:18-22.Google Scholar

  • 23. COUCHOUX H, BICHRAOUI H, CHOUABE C, ALTAFAJ X, BONVALLET R, ALLARD B, RONJAT M, BERTHIER C. Caveolin-3 is a direct molecular partner of the Cav 1.1 subunit of the skeletal muscle L-type calcium channel. The International Journal of Biochemistry & Cell Biology, 2011; 43 (5): 713-720. CrossrefGoogle Scholar

  • 24. GAZZERRO E, SOTGIA F, BRUNO C, LISANTI MP, MINETTI C. Caveolinopathies: from the biology of caveolin-3 to human diseases. European Journal of Human Genetics. 2010; 18: 137-145.CrossrefGoogle Scholar

  • 25. LO HP, BERTINI E, MIRABELLA M, DOMAZETOVSKA A, DALE RC, PETRINI S, D’AMICO A, VALENTE EM, BARRESI R, ROBERTS M, TOZZI G, TASCA G, COOPER ST, et al. Mosaic caveolin-3 expression in acquired rippling muscle disease without evidence of myasthenia gravis or acetylcholine receptor autoantibodies. Neuromuscular Disorders, 2011; 21 (3): 194-203.CrossrefGoogle Scholar

  • 26. MINETTI C, SOTGIA F, BRUNO C, SCARTEZZINI P, BRODA P, BADO M, MASETTI E, MAZZOCCO M, EGEO A, DONATI M A, VOLONTÉ D, GALBIATI F, CORDONE G, et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genetics, 1998; 18: 365-368.CrossrefGoogle Scholar

  • 27. CARBONE I, BRUNO C, SOTGIA F, BADO M, BRODA P, MASETTI E, PANELLA A, ZARA F, BRICARELLI FD, CORDONE G, LISANTI MP, MINETTI C. Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia. Neurology.2000; 54(6):1373-6.CrossrefGoogle Scholar

  • 28. MERLINI L, CARBONE I, CAPANNI C, SABATELLI P, TORTORELLI S, LISANTI MP, BRUNO C, MINETTI C. Familial isolated hyperCKaemia associated with a new mutation in the caveolin-3 (CAV-3) gene. J Neurol Neurosurg Psychiatry. 2002; 73(1):65-7.CrossrefGoogle Scholar

  • 29. WOODMAN SE, SOTGIA F, GALBIATI F, MINETTI C, LISANTI MP. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology.2004 ; 62(4): 538-43.CrossrefGoogle Scholar

  • 30. PETERLE E, FANIN M, SEMPLICINI C, et al. Clinical phenotype, muscle MRI and muscle pathology of LGMD1F. J Neurol, 2013; 260:2033-41.CrossrefGoogle Scholar

  • 31. VIEIRA NM, NASLAVSKY MS, LICINIO L, et al. A defect in the RNAprocessing protein HNRPDL causes limb-girdle muscular dystrophy1G (LGMD1G). Hum Mol Genet 2014. [Epub ahead of print]Google Scholar

  • 32. STARLING A, KOK F, PASSOS-BUENO MR, et al. A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet 2004; 12: 1033-40.CrossrefGoogle Scholar

  • 33. BISCEGLIA L, ZOCCOLELLA S, TORRACO A, et al. A new locus on 3p23-p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H. Eur J Hum Genet 2010; 18: 636-41.CrossrefGoogle Scholar

  • 34. FARDEAU M, HILLAIRE D, MIGNARD C, FEINGOLD N, FEINGOLD J, MIGNARD D, DE UBEDA B, COLLIN H, TOME FM, RICHARD I, BECKMANN J. Juvenile limb-girdle muscular dystrophy: clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain 1996; 119: 295-308.CrossrefGoogle Scholar

  • 35. PATHAK P, SHARMA MC, SARKAR C, et al. Limb-girdle muscular dystrophy type 2A in India: a study based on semiquantitative protein analysis, with clinical and histopathological correlation. Neurol India, 2010; 58: 549-54.Google Scholar

  • 36. WEILER T, BASHIR R, ANDERSON LV, et al. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene (s). Hum Mol Genet, 1999; 8:871-7.CrossrefGoogle Scholar

  • 37. CACCIOTTOLO M, NUMITONE G, AURINO S, et al. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet. 2011; 19:974-80.CrossrefGoogle Scholar

  • 38. NOGUCHI S, MCNALLY EM, BEN OTHMANE K, et al. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome13 muscular dystrophy. Science. 1995; 270:819-22.Google Scholar

  • 39. LIM LE, DUCLOS F, BROUX O, et al. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet. 1995; 11:257-65.CrossrefGoogle Scholar

  • 40. ROBERDS SL, LETURCQ F, ALLAMAND V, et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994; 78:625-33.CrossrefGoogle Scholar

  • 41. MOREIRA ES, WILTSHIRE TJ, FAULKNER G, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 2000; 24:163-6.CrossrefGoogle Scholar

  • 42. LOCKE M, TINSLEY CL, BENSON MA, et al. TRIM32 is an E3 ubiquitin ligase for dysbindin. Hum Mol Genet 2009; 18:2344-58.Google Scholar

  • 43. FROSK P, WEILER T, NYLEN E, et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 2002; 70: 663-72.Google Scholar

  • 44. BROWN SC, TORELLI S, BROCKINGTON M, YUVA Y, JIMENEZ C, FENG L, ANDERSON L, UGO I, KROGER S, BUSHBY K, VOIT T, SEWRY C, MUNTONI F. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies, American Journal of Pathology, 2004, 164 (2):727-37.CrossrefGoogle Scholar

  • 45. LIANG W-C, HAYASHI YK, OGAWA M, WANG C-H, HUANG W-T, NISHINO I, JONG Y-J. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan. Neuromuscular Disorders, 2013, 23 (8): 675-681.CrossrefGoogle Scholar

  • 46. BROCKINGTON M, BLAKE DJ, PRANDINI P, et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet, 2001; 69:1198-209.CrossrefGoogle Scholar

  • 47. MERCURI E, BROCKINGTON M, STRAUB V, et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. AnnNeurol, 2003; 53:537-42.Google Scholar

  • 48. GERULL B, GRAMLICH M, ATHERTON J, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002; 30:201-4.CrossrefGoogle Scholar

  • 49. CHONG YK, KWAN MA LC, LO KL, LAI LEE CK, MAK CM, CHI KAN AN, LAM CW. Dystroglycanopathy with two novel POMT1 mutations in a Chinese boy with developmental delay and muscular dystrophy. European Journal of Paediatric Neurology, 2014 [Epub ahead of print].Google Scholar

  • 50. BEHIN A, LETURCQ F, COSSÉE M, WAHBI K, DEBURGRAVE N, BÉCANE H-M, CARLIER R-Y, LAFORÊT P, STOJKOVIC T, CARLIER P, EYMARD B. Anoctamin 5 myopathy: More patients, more phenotypes. Journal of the Neurological Sciences, 2013, 333 (Suppl. 1): e47. Google Scholar

  • 51. BOLDUC V, MARLOW G, BOYCOTT KM, SALEKI K, INOUE H, KROON J, ITAKURA M, ROBITAILLE Y, PARENT L, BAAS F, et al. Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies. The American Journal of Human Genetics. 2010; 86:213-221.CrossrefGoogle Scholar

  • 52. BOUQUET F, COSSEE M, BEHIN A, DEBURGRAVE N, ROMERO N, LETURCQ F, EYMARD B. Miyoshi-like distal myopathy with mutations in anoctamin 5 gene (Myopathie de type Miyoshi associée à des mutations du gène de l’anoctamine 5). Revue Neurologique. 2012; 168 (2): 135-141.CrossrefGoogle Scholar

  • 53. HICKS D, SARKOZY A, MUELAS N, KÖEHLER K, HUEBNER A, HUDSON G, CHINNERY PF, BARRESI R, EAGLE M, et al. A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy. Brain. 2011; 134 (1): 171-182.CrossrefGoogle Scholar

  • 54. LITTLE A, MCKEEVER P, GRUIS K. Novel mutations in the anoctamin 5 gene (ANO5) associated with limb-girdle muscular dystrophy 2L. Muscle & Nerve, 2013; 47 (2): 287-291.CrossrefGoogle Scholar

  • 55. MAGRI F, DEL BO R, D’ANGELO MG, SCIACCO M, GANDOSSINI S, GOVONI A, NAPOLI L, CISCATO P, et al. Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscular Disorders, 2012; 22 (11): 934-943.CrossrefGoogle Scholar

  • 56. MAHJNEH I, JAISWAL J, LAMMINEN A, SOMER M, MARLOW G, KIURU-ENARI S, BASHIR R. A new distal myopathy with mutation in anoctamin 5. Neuromuscular Disorders, 2010; 20 (12): 791-795.CrossrefGoogle Scholar

  • 57. RAJ JOSHI P, GLÄSER D, DREßEL C, KRESS W, WEIS J, DESCHAUER M. Anoctamin 5 muscular dystrophy associated with a silent p.Leu115Leu mutation resulting in exon skipping. Neuromuscular Disorders, 2014; 24 (1): 43-47.Google Scholar

  • 58. SARKOZY A, HICKS D, HUDSON J, LAVAL SH, BARRESI R, HILTON-JONES D, DESCHAUER M, HARRIS E, et al. ANO5 Gene Analysis in a Large Cohort of Patients with Anoctaminopathy: Confirmation of Male Prevalence and High Occurrence of the Common Exon 5 Gene Mutation. Human Mutation. 2013; 34 (8): 1111-1118.Google Scholar

  • 59. SCHESSL J, KRESS W, SCHOSER B. Novel ANO5 mutations causing hyper-CK-emia, limb girdle muscular weakness and Miyoshi type of muscular dystrophy, 2012; Muscle & Nerve, 45 (5): 740-742.CrossrefGoogle Scholar

  • 60. WAHL CM, VAN GHELUE M, ARNTZEN KA, HALVORSEN H, INGEBRIGTSEN M, SKOGSTAD A, HESTHOLM B, LØSETH S, MELLGREN SI, RASMUSSEN F, LINDAHL S, JONSRUD C. Mutations in anoctamin 5 in limb girdle muscular dystrophy in Norway: Phenotypic variability and mutation spectrum. Journal of the Neurological Sciences, 2013; 333 (SUPPL. 1): E444.Google Scholar

  • 61. WITTING N, DUNO M, PETRI H, KRAG T, BUNDGAARD H, KOBER L, VISSING J. Anoctamin 5 muscular dystrophy in Denmark: prevalence, genotypes, phenotypes, cardiac findings, and muscle protein expression. Journal of Neurology, 2013; 260 (8): 2084-2093.Google Scholar

  • 62. TIAN Y, SCHREIBER R, KUNZELMANN K. Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci; 125:4991-8.Google Scholar

  • 63. MERCURI E, MESSINA S, BRUNO C, et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology, 2009; 72: 1802-9.CrossrefGoogle Scholar

  • 64. PUCKETT RL, MOORE SA, WINDER TL, et al. Further evidence of Fukutin mutations as a cause of childhood onset limbgirdle muscular dystrophy without mental retardation. Neuromuscul Disord, 2009; 19:352-6.CrossrefGoogle Scholar

  • 65. BIANCHERI R, FALACE A, TESSA A, et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun, 2007; 363:1033-7.CrossrefGoogle Scholar

  • 66. PANE M, MESSINA S, VASCO G, FOLEY AR, MORANDI L, PEGORARO E, MONGINI T, D’AMICO A, BIANCO F, LOMBARDO ME, SCALISE R, BRUNO C, BERARDINELLI A, et al. Respiratory and cardiac function in congenital muscular dystrophies with alpha dystroglycan deficiency. Neuromuscular Disorders, 2012; 22 (8): 685-689.CrossrefGoogle Scholar

  • 67. CLEMENT EM, GODFREY C, TAN J, et al. Mild POMGNT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol, 2008; 65:137-41.Google Scholar

  • 68. RADUCU M, BAETS J, FANO O, et al. Promoter alteration causes transcriptional repression of the POMGNT1 gene in limbgirdle muscular dystrophy type 20. Eur J Hum Genet, 2012.Google Scholar

  • 69. GODFREY C, FOLEY AR, CLEMENT E, MUNTONI F. Dystroglycanopathies: coming into focus, Current Opinion in Genetics & Development. 2011; 21 (3): 278-285.Google Scholar

  • 70. HARA Y, BALCI-HAYTA B, YOSHIDA-MORIGUCHI T, KANAGAWA M, BELTRÁN-VALERO DE BERNABÉ D, GÜNDEŞLI H, WILLER T, SATZ JS, CRAWFORD RW, et al. A Dystroglycan Mutation Associated with Limb-Girdle Muscular Dystrophy. New Engl. J. Med. 2011; 364(10): 939-946.Google Scholar

  • 71. GUNDESLI H, TALIM B, KORKUSUZ P, et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet 2010; 87:834-41.CrossrefGoogle Scholar

  • 72. CETIN N, BALCI-HAYTA B, GUNDESLI H, et al. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 2013; 50:437-43.CrossrefGoogle Scholar

  • 73. BOGERSHAUSEN N, SHAHRZAD N, CHONG JX, et al. Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle musculardystrophy and myopathy with movement disorder and intellectual disability. Am J Hum Genet; 93:181-90. 87:834-41.Google Scholar

  • 74. SCRIVENS PJ, SHAHRZAD N, MOORES A, et al. TRAPPC2L is a novel, highly conserved TRAPP-interacting protein. Traffic 2009; 10:724-36.CrossrefGoogle Scholar

  • 75. CARSS KJ, STEVENS E, FOLEY AR, CIRAK, RIEMERSMA M, TORELLI S, HOISCHEN A, WILLER T, VAN SCHERPENZEEL M, MOORE SA, et al. Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb- Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan. The American Journal of Human Genetics. 2013; 93 (1): 29-41.CrossrefGoogle Scholar

  • 76. CIRAK S, FOLEY AR, HERRMANN R, WILLER T, YAU S, STEVENS E, TORELLI S, BRODD L, KAMYNINA A, VONDRACEK P, ROPER H, LONGMAN C, KORINTHENBERG R. et al. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain 2013; 136(1): 269-281. CrossrefGoogle Scholar

  • 77. GUGLIERI M, BUSHBY K. How to go about diagnosing and managing the limb-girdle muscular dystrophies. Neurol India, 2008; 56: 271-80.Google Scholar

  • 78. WICKLUND MP, KISSEL JT. The limb-girdle muscular dystrophies. Neurol Clin 2014; 32(3):729-49.CrossrefGoogle Scholar

  • 79. WALTON J, NATRASS F. On the classification, natural history and treatment of the myopathies. Brain. 1954; 77:169-231.CrossrefGoogle Scholar

  • 80. BARESI R. From proteins to genes: immunoanalysis in the diagnosis of muscular dystrophies. Skeletal Muscle. 2011; 1:24.Google Scholar

  • 81. MAHMOOD O, JIANG XM. Limb-girdle muscular dystrophies: Where next after six decades from the first proposal. Mol Med Rep, 2014; 9(5): 1515-1532.Google Scholar

  • 82. NIGRO V, SAVARESE M. Genetic basis of limb-girdle muscular dystrophies: the 2014 update. Acta Myologica 2014; 32: 1-12.Google Scholar

  • 83. COTTA A, CARVALHO E, LOPES DA-CUNHA A, et al. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? Arq Neuropsiquiatr, 2014; 72(9):721-734.CrossrefGoogle Scholar

  • 84. NORWOOD FL, HARLING C, CHINNERY PF, EAGLE M, BUSHBY K, STRAUB V. Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain. 2009; 132:3175-3186.CrossrefGoogle Scholar

  • 85. GOMEZ-DIAZ B, ROSAS-VARGAS H, ROQUE-RAMIREZ B, et al. Immunodetection analysis of muscular dystrophies in Mexico. Muscle Nerve. 2012; 45:338-345.CrossrefGoogle Scholar

  • 86. DINIZ G, ERYAŞAR G, TÜRE S, et al. A regional panorama of dysferlinopathies. Turk Patoloji Derg. 2012; 28: 259-265.Google Scholar

  • 87. FANIN M, NASCIMBENI AC, FULIZIO L, et al. The frequency of limb girdle muscular dystrophy 2A in northeastern Italy. Neuromuscul Disord 2005; 15:218-24.CrossrefGoogle Scholar

  • 88. STEHLÍKOVÁ K, SKÁLOVÁ D, ZÍDKOVÁ J, MRÁZOVÁ L, MAZANEC R, VOHANKA S, HABERLOVA J, HERMANOVA M, ZAMECNIK J, SOUCEK O, OŠLEJŠKOVÁ H, DVOŘÁČKOVÁ N, SOLAROVA P, FAJKUSOVÁ L. Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic. BMC Neurology 2014, 14:154.CrossrefGoogle Scholar

  • 89. ZATZ M, DE PAULA F, STARLING A, VAINZOF M. The 10 autosomal recessive limb-girdle muscular dystrophies. Neuromuscular disorders, 2003; 13: 532-544.Google Scholar

  • 90. PENISSON-BESNIER I, HACKMAN P, SUOMINEN T, et al. Myopathies caused by homozygous titin mutations: limb-girdle muscular dystrophy 2J and variations of phenotype. J Neurol Neurosurg Psychiatry 2010; 81:1200-2.CrossrefGoogle Scholar

  • 91. HALLIDAY W, GREENBERG CR, WROGEMANN K, et al. Genetic heterogeneity of limb girdle muscular dystrophy in Manitoba Hutterites. Am J Hum Genet 1998; 63 (Suppl): A 392.Google Scholar

  • 92. SHOKEIR MH, KOBRINSKY NL. Autosomal recessive muscular dystrophy in Manitoba Hutterites. Clin Genet. 1976; 9(2): 197-202.Google Scholar

  • 93. WEILER T, GREENBERG CR, ZELINSKI T, et al. Limb Girdle Muscular Dystrophy in Manitoba Hutterites maps to chromosome region 9q31-q33: evidence for another LGMD locus. Am J Hum Genet. 1998; 63: 140-7.CrossrefGoogle Scholar

  • 94. REILICH P, KRAUSE S, SCHRAMM N, et al. A novel mutation in the myotilin gene (MYOT) causes a severe form of limb girdle muscular dystrophy 1A (LGMD1A). J Neurol 2011; 258:1437-44.CrossrefGoogle Scholar

  • 95. HAUSER MA, HORRIGAN SK, SALMIKANGAS P, et al. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum Mol Genet, 2000; 9:2141-7.CrossrefGoogle Scholar

  • 96. SALMIKANGAS P, VAN DER VEN PF, LALOWSKI M, TAIVAINEN A, ZHAO F, SUILA H, SCHRÖDER R, LAPPALAINEN P, FÜRST DO, CARPÉN O. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum Mol Genet. 2003; 12(2): 189-203.CrossrefGoogle Scholar

  • 97. MUCHIR A, BONNE G, VAN DER KOOI AJ, et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limbgirdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 2000; 9:1453-9.CrossrefGoogle Scholar

  • 98. LAVAL SH, BUSHBY KM. Limb-girdle muscular dystrophies-from genetics to molecular pathology. Neuropathol Appl Neurobiol.2004; 30(2): 91-105.CrossrefGoogle Scholar

  • 99. POLITANO L, CARBONI N, MADEJ-PILARCZYK A, et al. Advances in basic and clinical research in laminopathies. Acta Myol, 2013; 32:18-22.Google Scholar

  • 100. COUCHOUX H, BICHRAOUI H, CHOUABE C, ALTAFAJ X, BONVALLET R, ALLARD B, RONJAT M, BERTHIER C. Caveolin-3 is a direct molecular partner of the Cav 1.1 subunit of the skeletal muscle L-type calcium channel. The International Journal of Biochemistry & Cell Biology, 2011; 43 (5): 713-720.CrossrefGoogle Scholar

  • 101. GAZZERRO E, SOTGIA F, BRUNO C, LISANTI MP, MINETTI C. Caveolinopathies: from the biology of caveolin-3 to human diseases. European Journal of Human Genetics. 2010; 18: 137-145.CrossrefGoogle Scholar

  • 102. LO HP, BERTINI E, MIRABELLA M, DOMAZETOVSKA A, DALE RC, PETRINI S, D’AMICO A, VALENTE EM, BARRESI R, ROBERTS M, TOZZI G, TASCA G, COOPER ST, et al. Mosaic caveolin-3 expression in acquired rippling muscle disease without evidence of myasthenia gravis or acetylcholine receptor autoantibodies. Neuromuscular Disorders, 2011; 21 (3): 194-203.CrossrefGoogle Scholar

  • 103. MINETTI C, SOTGIA F, BRUNO C, SCARTEZZINI P, BRODA P, BADO M, MASETTI E, MAZZOCCO M, EGEO A, DONATI M A, VOLONTÉ D, GALBIATI F, CORDONE G, et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nature Genetics, 1998; 18: 365-368.CrossrefGoogle Scholar

  • 104. CARBONE I, BRUNO C, SOTGIA F, BADO M, BRODA P, MASETTI E, PANELLA A, ZARA F, BRICARELLI FD, CORDONE G, LISANTI MP, MINETTI C. Mutation in the CAV3 gene causes partial caveolin-3 deficiency and hyperCKemia. Neurology. 2000; 54(6):1373-6.CrossrefGoogle Scholar

  • 105. MERLINI L, CARBONE I, CAPANNI C, SABATELLI P, TORTORELLI S, LISANTI MP, BRUNO C, MINETTI C. Familial isolated hyperCKaemia associated with a new mutation in the caveolin-3 (CAV-3) gene. J Neurol Neurosurg Psychiatry. 2002; 73(1):65-7.CrossrefGoogle Scholar

  • 106. WOODMAN SE, SOTGIA F, GALBIATI F, MINETTI C, LISANTI MP. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology.2004 ; 62(4):538-43. CrossrefGoogle Scholar

  • 107. PETERLE E, FANIN M, SEMPLICINI C, et al. Clinical phenotype, muscle MRI and muscle pathology of LGMD1F. J Neurol, 2013; 260:2033-41.CrossrefGoogle Scholar

  • 108. VIEIRA NM, NASLAVSKY MS, LICINIO L, et al. A defect in the RNA processing protein HNRPDL causes limb-girdle muscular dystrophy1G (LGMD1G). Hum Mol Genet 2014 [Epub ahead of print].Google Scholar

  • 109. STARLING A, KOK F, PASSOS-BUENO MR, et al. A new form of autosomal dominant limb-girdle muscular dystrophy (LGMD1G) with progressive fingers and toes flexion limitation maps to chromosome 4p21. Eur J Hum Genet 2004; 12: 1033-40.CrossrefGoogle Scholar

  • 110. BISCEGLIA L, ZOCCOLELLA S, TORRACO A, et al. A new locus on 3p23-p25 for an autosomal-dominant limb-girdle muscular dystrophy, LGMD1H. Eur J Hum Genet 2010; 18: 636-41.CrossrefGoogle Scholar

  • 111. FARDEAU M, HILLAIRE D, MIGNARD C, FEINGOLD N, FEINGOLD J, MIGNARD D, DE UBEDA B, COLLIN H, TOME FM, RICHARD I, BECKMANN J. Juvenile limb-girdle muscular dystrophy: clinical, histopathological and genetic data from a small community living in the Reunion Island. Brain 1996; 119: 295-308.CrossrefGoogle Scholar

  • 112. PATHAK P, SHARMA MC, SARKAR C, et al. Limb girdle muscular dystrophy type 2A in India: a study based on semiquantitative protein analysis, with clinical and histopathological correlation. Neurol India, 2010; 58:549-54.Google Scholar

  • 113. WEILER T, BASHIR R, ANDERSON LV, et al. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene (s). Hum Mol Genet, 1999; 8:871-7.CrossrefGoogle Scholar

  • 114. CACCIOTTOLO M, NUMITONE G, AURINO S, et al. Muscular dystrophy with marked Dysferlin deficiency is consistently caused by primary dysferlin gene mutations. Eur J Hum Genet. 2011; 19:974-80.CrossrefGoogle Scholar

  • 115. NOGUCHI S, MCNALLY EM, BEN OTHMANE K, et al. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome13 muscular dystrophy. Science. 1995; 270:819-22.CrossrefGoogle Scholar

  • 116. LIM LE, DUCLOS F, BROUX O, et al. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet. 1995; 11:257-65.CrossrefGoogle Scholar

  • 117. ROBERDS SL, LETURCQ F, ALLAMAND V, et al. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 1994; 78:625-33.CrossrefGoogle Scholar

  • 118. MOREIRA ES, WILTSHIRE TJ, FAULKNER G, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 2000;24:163-6.CrossrefGoogle Scholar

  • 119. LOCKE M, TINSLEY CL, BENSON MA, et al. TRIM32 is an E3 ubiquitin ligase for dysbindin. Hum Mol Genet 2009; 18:2344-58.CrossrefGoogle Scholar

  • 120. FROSK P, WEILER T, NYLEN E, et al. Limb-girdle muscular dystrophy type 2H associated with mutation in TRIM32, a putative E3-ubiquitin-ligase gene. Am J Hum Genet 2002; 70: 663-72.CrossrefGoogle Scholar

  • 121. BROWN SC, TORELLI S, BROCKINGTON M, YUVA Y, JIMENEZ C, FENG L, ANDERSON L, UGO I, KROGER S, BUSHBY K, VOIT T, SEWRY C, MUNTONI F. Abnormalities in alpha-dystroglycan expression in MDC1C and LGMD2I muscular dystrophies. American Journal of Pathology, 2004, 164 (2):727-37.CrossrefGoogle Scholar

  • 122. LIANG W-C, HAYASHI YK, OGAWA M, WANG C-H, HUANG W-T, NISHINO I, JONG Y-J. Limb-girdle muscular dystrophy type 2I is not rare in Taiwan, Neuromuscular Disorders, 2013, 23 (8): 675-681.CrossrefGoogle Scholar

  • 123. BROCKINGTON M, BLAKE DJ, PRANDINI P, et al. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Am J Hum Genet, 2001; 69:1198-209.CrossrefGoogle Scholar

  • 124. MERCURI E, BROCKINGTON M, STRAUB V, et al. Phenotypic spectrum associated with mutations in the fukutin-related protein gene. AnnNeurol, 2003; 53:537-42.Google Scholar

  • 125. GERULL B, GRAMLICH M, ATHERTON J, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy,Nat Genet 2002; 30:201-4.CrossrefGoogle Scholar

  • 126. CHONG YK, KWAN MA LC, LO KL, LAI LEE CK, MAK CM, CHI KAN AN, LAM CW. Dystroglycanopathy with two novel POMT1 mutations in a Chinese boy with developmental delay and muscular dystrophy. European Journal of Paediatric Neurology, 2014 [Epub ahead of print].Google Scholar

  • 127. BEHIN A, LETURCQ F, COSSÉE M, WAHBI K, DEBURGRAVE N, BÉCANE H-M, CARLIER R-Y, LAFORÊT P, STOJKOVIC T, CARLIER P, EYMARD B. Anoctamin 5 myopathy: More patients, more phenotypes. Journal of the Neurological Sciences, 2013, 333 (Suppl. 1): e47.Google Scholar

  • 128. BOLDUC V, MARLOW G, BOYCOTT KM, SALEKI K, INOUE H., KROON J, ITAKURA M, ROBITAILLE Y, PARENT L, BAAS F, et al. Recessive Mutations in the Putative Calcium-Activated Chloride Channel Anoctamin 5 Cause Proximal LGMD2L and Distal MMD3 Muscular Dystrophies. The American Journal of Human Genetics. 2010; 86:213-221.CrossrefGoogle Scholar

  • 129. BOUQUET F, COSSEE M, BEHIN A, DEBURGRAVE N, ROMERO N, LETURCQ F, EYMARD B. Miyoshi-like distal myopathy with mutations in anoctamin 5 gene (Myopathie de type Miyoshi associée à des mutations du gène de l’anoctamine 5). Revue Neurologique. 2012; 168 (2): 135-141.CrossrefGoogle Scholar

  • 130. HICKS D, SARKOZY A, MUELAS N, KÖEHLER K, HUEBNER A, HUDSON G, CHINNERY PF, BARRESI R, EAGLE M, et al. A founder mutation in Anoctamin 5 is a major cause of limb girdle muscular dystrophy. Brain. 2011; 134 (1): 171-182.CrossrefGoogle Scholar

  • 131. LITTLE A, MCKEEVER P, GRUIS K. Novel mutations in the anoctamin 5 gene (ANO5) associated with limb-girdle muscular dystrophy 2L. Muscle & Nerve, 2013; 47 (2): 287-291.CrossrefGoogle Scholar

  • 132. MAGRI F, DEL BO R, D’ANGELO MG, SCIACCO M, GANDOSSINI S, GOVONI A, NAPOLI L, CISCATO P, et al. Frequency and characterisation of anoctamin 5 mutations in a cohort of Italian limb-girdle muscular dystrophy patients. Neuromuscular Disorders, 2012; 22 (11): 934-943.CrossrefGoogle Scholar

  • 133. MAHJNEH I, JAISWAL J, LAMMINEN A, SOMER M, MARLOW G, KIURU-ENARI S, BASHIR R. A new distal myopathy with mutation in anoctamin 5. Neuromuscular Disorders, 2010; 20 (12): 791-795.CrossrefGoogle Scholar

  • 134. RAJ JOSHI P, GLÄSER D, DREßEL C, KRESS W, WEIS J, DESCHAUER M. Anoctamin 5 muscular dystrophy associated with a silent p.Leu115Leu mutation resulting in exon skipping. Neuromuscular Disorders, 2014; 24 (1): 43-47. Google Scholar

  • 135. SARKOZY A, HICKS D, HUDSON J, LAVAL SH, BARRESI R, HILTON-JONES D, DESCHAUER M, HARRIS E, et al. ANO5 Gene Analysis in a Large Cohort of Patients with Anoctaminopathy: Confirmation of Male Prevalence and High Occurrence of the Common Exon 5 Gene Mutation. Human Mutation. 2013; 34 (8): 1111-1118.Google Scholar

  • 136. SCHESSL J, KRESS W, SCHOSER B. Novel ANO5 mutations causing hyper-CK-emia, limb girdle muscular weakness and Miyoshi type of muscular dystrophy. 2012; Muscle & Nerve, 45 (5): 740-742.CrossrefGoogle Scholar

  • 137. WAHL CM, VAN GHELUE M, ARNTZEN KA, HALVORSEN H, INGEBRIGTSEN M, SKOGSTAD A, HESTHOLM B, LØSETH S, MELLGREN SI, RASMUSSEN F, LINDAHL S, JONSRUD C. Mutations in anoctamin 5 in limb girdle muscular dystrophy in Norway: Phenotypic variability and mutation spectrum. Journal of the Neurological Sciences, 2013; 333 (SUPPL. 1): E444.Google Scholar

  • 138. WITTING N, DUNO M, PETRI H, KRAG T, BUNDGAARD H, KOBER L, VISSING J. Anoctamin 5 muscular dystrophy in Denmark: prevalence, genotypes, phenotypes, cardiac findings, and muscle protein expression. Journal of Neurology, 2013; 260 (8): 2084-2093.Google Scholar

  • 139. TIAN Y, SCHREIBER R, KUNZELMANN K. Anoctamins are a family of Ca2+-activated Cl- channels. J Cell Sci; 125:4991-8.Google Scholar

  • 140. MERCURI E, MESSINA S, BRUNO C, et al. Congenital muscular dystrophies with defective glycosylation of dystroglycan: a population study. Neurology, 2009;72: 1802-9.CrossrefGoogle Scholar

  • 141. PUCKETT RL, MOORE SA, WINDER TL, et al. Further evidence of Fukutin mutations as a cause of childhood onset limbgirdle muscular dystrophy without mental retardation. Neuromuscul Disord, 2009;19:352-6.CrossrefGoogle Scholar

  • 142. BIANCHERI R, FALACE A, TESSA A, et al. POMT2 gene mutation in limb-girdle muscular dystrophy with inflammatory changes. Biochem Biophys Res Commun, 2007; 363:1033-7.CrossrefGoogle Scholar

  • 143. PANE M, MESSINA S, VASCO G, FOLEY AR, MORANDI L, PEGORARO E, MONGINI T, D’AMICO A, BIANCO F, LOMBARDO ME, SCALISE R., BRUNO C, BERARDINELLI A, et al. Respiratory and cardiac function in congenital muscular dystrophies with alpha dystroglycan deficiency. Neuromuscular Disorders, 2012; 22 (8): 685-689.CrossrefGoogle Scholar

  • 144. CLEMENT EM, GODFREY C, TAN J, et al. Mild POMGNT1 mutations underlie a novel limb-girdle muscular dystrophy variant. Arch Neurol, 2008; 65:137-41.Google Scholar

  • 145. RADUCU M, BAETS J, FANO O, et al. Promoter alteration causes transcriptional repression of the POMGNT1 gene in limbgirdle muscular dystrophy type 20. Eur J Hum Genet, 2012.Google Scholar

  • 146. GODFREY C, FOLEY AR, CLEMENT E, MUNTONI F. Dystroglycanopathies: coming into focus. Current Opinion in Genetics & Development. 2011; 21 (3): 278-285.Google Scholar

  • 147. HARA Y, BALCI-HAYTA B, YOSHIDA-MORIGUCHI T, KANAGAWA M, BELTRÁN-VALERO DE BERNABÉ D, GÜNDEŞLI H, WILLER T, SATZ JS, CRAWFORD RW, et al. A Dystroglycan Mutation Associated with Limb-Girdle Muscular Dystrophy. New Engl. J. Med. 2011; 364(10): 939-946.Google Scholar

  • 148. GUNDESLI H, TALIM B, KORKUSUZ P, et al. Mutation in exon 1f of PLEC, leading to disruption of plectin isoform 1f, causes autosomal-recessive limb-girdle muscular dystrophy. Am J Hum Genet 2010; 87:834-41.CrossrefGoogle Scholar

  • 149. CETIN N, BALCI-HAYTA B, GUNDESLI H, et al. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 2013; 50:437-43.CrossrefGoogle Scholar

  • 150. BOGERSHAUSEN N, SHAHRZAD N, CHONG JX, et al. Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am J Hum Genet; 93:181-90. 87:834-41.Google Scholar

  • 151. SCRIVENS PJ, SHAHRZAD N, MOORES A, et al. TRAPPC2L is a novel, highly conserved TRAPP-interacting protein. Traffic 2009; 10:724-36.CrossrefGoogle Scholar

  • 152. CARSS KJ, STEVENS E, FOLEY AR, CIRA K, RIEMERSMA M, TORELLI S, HOISCHEN A, WILLER T, VAN SCHERPENZEEL M, MOORE SA, et al. Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb- Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan. The American Journal of Human Genetics. 2013; 93 (1): 29-41.CrossrefGoogle Scholar

  • 153. CIRAK S, FOLEY AR, HERRMANN R, WILLER T, YAU S, STEVENS E, TORELLI S, BRODD L, KAMYNINA A, VONDRACEK P, ROPER H, LONGMAN C, KORINTHENBERG R, et al. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain 2013; 136(1): 269-281.CrossrefGoogle Scholar

  • 154. GUGLIERI M, BUSHBY K. How to go about diagnosing and managing the limb-girdle muscular dystrophies. Neurol India, 2008; 56:271-80. Google Scholar

About the article

Received: 2015-02-10

Published Online: 2015-10-07

Published in Print: 2015-03-01


Citation Information: Romanian Journal Of Internal Medicine, ISSN (Online) 1220-4749, DOI: https://doi.org/10.1515/rjim-2015-0002.

Export Citation

© 2015. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in