Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Romanian Journal of Internal Medicine

4 Issues per year

Open Access
Online
ISSN
2501-062X
See all formats and pricing
More options …

The Effect of Arterial PaCO2 in COPD Exacerbations with and without Peripheral Edema

Fariba Rezaeetalab / Abbas Ali Zeraatti / Farzaneh Sharifipour / Rozita Davoodi
  • Research Center for Patient Safety & Health Quality, Mashhad University of Medical Sciences, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hoorak Pourzand
  • Preventive Cardiovascular Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-10 | DOI: https://doi.org/10.1515/rjim-2015-0044

Abstract

Introduction. Studies often suggest hypoxemia is an important factor for sodium retention in chronic obstructive pulmonary disease (COPD), although hypercapnia is also associated with sodium retention in these patients. Hence, we have presented the major role of PaCO2 in edema due to COPD.

Method. COPD patients who were hospitalized due to exacerbation were enrolled in the study and divided into two groups: with and without edema. Exclusion criteria included primary hepatic diseases, nephrotic syndrome and other renal diseases, left heart failure, or using drugs that would interfere with these organs or endocrine function. Data were coded and analyzed by SPSS software. Arterial blood gas variables including bicarbonate, pH, and PaO2, PaCO2 and O2 saturation, and FEV1, FVC, FEV1/FVC were measured and compared between the groups.

Results. No significant difference was found between the averages of bicarbonate, pH, PaO2, O2 saturation, FEV1, FVC and FEV1/FVC in COPD in the two groups. PaCO2 levels were significantly higher in patients with edema, compared to those without edema (p = 0.05). A reverse and significant correlation between PaCo2 and FEV1 levels (p = 0.03) (r = −0.501) was observed in patients with edema.

Conclusion. This study suggests that hypercapnia is a major factor in causing edema in COPD patients compared to hypoxemia.

Introducere. Hipoxia este un factor important pentru retenţia sodiului şi boala pulmonară cronică obstructivă (BPOC) deşi şi hipercapnia este asociată cu retenţia de sodiu la aceşti pacienţi. Articolul se concentrează pe rolul pe care îl joacă PaCO2 pentru apariţia edemelor la pacienţii cu BPOC.

Materiale şi metode. Au fost incluşi în studiu pacienţi spitalizaţi cu BPOC. Aceştia au fost împărţiţi în două grupe – cu şi fără edeme. Criteriile de excludere au fost boli hepatice, sindrom nefrotic sau alte afectări renale, insuficienţă cardiacă stângă, sau medicaţie care ar fi putut să interfere cu funcţia endocrină. Datele au fost analizate utilizând softul SPSS. Au fost studiate gazele sanguine (PaO2, PaCO2), pH, nivelurile ionului bicarbonat alături de VEMS (volumul expirator maxim în prima secundă), CVF (capacitatea vitală forţată) şi raportul VEMS/FVC.

Rezultate. Nu au fost găsite diferenţe semnificative între cele două grupuri exceptând valorile PaCO2 care au fost mai mari la grupul de pacienţi cu edeme (p = 0.05).

Concluzii. Studiul sugerează că hipercapnia este şi ea un factor determinant important pentru dezvoltarea edemelor la pacienţii cu BPOC.

Keywords: Arterial; PaCO2; Edema; Chronic obstructive pulmonary disease

REFERENCES

  • 1. JONES W, BRUSSELLE G, DAL NEGRO RW, FERRER M, KARDOS P, LEVY ML et al. Health-related quality of life in patients by COPD severity within primary care in Europe. Respiratory Medicine 2011; 105(1):57-66.Google Scholar

  • 2. ALFONSO A, VERHAMME K, STURKENBOOM M, BRUSSELLE G. COPD in the general population: Prevalence, incidence and survival. Respiratory Medicine, 2011; 105(12):1872-1884.Web of ScienceGoogle Scholar

  • 3. YAZDANPANAH L, SHIDFAR F, MOOSAVI A.J, HEIDARNAZHAD H, HAGHANI H. Energy and protein intake and its relationship with pulmonary function in chronic obstructive pulmonary disease (COPD) patients. Acta Medica Iranica 2010; 48(6): 374.Google Scholar

  • 4. RAND SUTHERLAND E, CHERNIACK M. Management of chronic obstructive pulmonary disease. New Eng J Med 2004; 350: 2689-97.Google Scholar

  • 5. MOBERG M, VESTBO J, MARTINEZ G, LANGE P, RINGBAEK T. Prognostic value of C-Reactive protein, leukocytes, and vitamin D in severe chronic obstructive pulmonary disease of outcome in COPD. Scientific World Journal 2014; 2014: 140736.Google Scholar

  • 6. GULL MR, GEJUDO P, RODRIGUEZ-TRIGO G, GALDIZ JB, CAZOLIVE V, REGUEIRO M et al. Standards of quality care in respiratory rehabilitation in patients with chronic pulmonary disease. Arch Bronchopneumol 2012; 48:369-404.Google Scholar

  • 7. VIJAYAN VK. Chronic obstructive pulmonary disease. Indian J Med Res 2013; 137(2):251-69.Google Scholar

  • 8. HAN MK, MCLAUGHLIN VV, CRINER GJ, MARTINEZ FJ. Pulmonary diseases and the heart. Circulation 2007; 116 (25): 2992-3005.Google Scholar

  • 9. HEMLIN M, LJUNGMAN S, CARLSON J, MALJUKANIC S, MOBINI R, BECH-HANSSEN O et al. The effects of hypoxemia and hypercapnia on renal and heart function hemodynamics and plasma hormone levels in stable COPD patients. Clin Respir J 2007; 1(2):80-90.Google Scholar

  • 10. PIKE D, PARRAGA G. Chronic obstructive pulmonary disease. More imaging, more phenotyping, better care? Can Respir J 2013; 20(2):90.CrossrefGoogle Scholar

  • 11. HILDE JM1, SKJØRTEN I, GRØTTA OJ, HANSTEEN V, MELSOM MN, HISDAL J et al. Right venticular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol 2013; 62(12):1103-11.CrossrefGoogle Scholar

  • 12. DEKHUIJZEN PN, BROEDERS ME, TUUT MK, GROL MH. Medical treatment of COPD. Ned Tijdschr Geneeskd 2008 28; 152(26):1465-8.Google Scholar

  • 13. WEITZENBLUM E, APPRILL M, OSWALD M, CHAOUAT A, IMBS JL. Pulmonary hemodynamics in patients with chronic obstructive pulmonary disease before and during an episode of peripheral edema. Chest 1994; 105(5): 1377-82.Google Scholar

  • 14. HODGKIN JE. Prognosis in chronic obstructive pulmonary disease. Clin Chest Med 1990; 11 (3): 550-69.Google Scholar

  • 15. ELÇI A, BÖREKÇI S, OVAYOLU N, ELBEK O. The efficacy and applicability of a pulmonary rehabilitation programme for patients with COPD in a secondary – care community hospital. Respir 2008; 13(5): 703-7.CrossrefGoogle Scholar

  • 16. HOWES TQ, DEANE CR, LEVIN GE, BAUDOUIN SV, MOXHAM J. The effects of oxygen and dopamine on renal and aortic blood flow in chronic obstructive pulmonary disease with hypoxemia and hypercapnia. Am J Resp Crit Care Med 1995; 151(2): 378-383.Google Scholar

  • 17. RICH R. Principle of immune reactions. In: Rich R, Fleisher T. Clinical immunology. Huston: Mosby; 1995: 317-330.Google Scholar

  • 18. SKWARSKI KM, MARRISON D, BARRATT A, LEE M, MACNEEW. Effect of hypoxemia on renal hormonal balance in normal subject and in patients with COPD. Respir Med 1998; 92(12):1331-6.Google Scholar

  • 19. OLAFSDOTTIR IS, GISLASON T, THJODLEIFSSON B, OLAFSSON I, GÍSLASON D, JÕGI R et al. Gender differences in the association between C-reactive protein, Lung function impairment, and COPD. Int J Chron Obstract Pulmon Dis. 2007; 2(4): 635-42Google Scholar

  • 20. ANAND IS, CHANDRASHEKHAR Y, FERRARI R, SARMA R, GULERIA R, JINDAL SK et al. Pathogenesis of congestive state in chronic obstructive pulmonary disease. Studies of body water and sodium, renal function, hemodynamics, and plasma hormones during edema and after recovery. Circulation 1992; 86 (1):12–21.Google Scholar

  • 21. SIN DD, MAN SF. Is systemic inflammation responsible for pulmonary hypertension in COPD? Chest 2006; 130 (2): 310-12.Web of ScienceGoogle Scholar

  • 22. MANNIX ET, DOWDESWELL IRG, CARLONE S, PALANGE P, ARONOFF GR, FARBER MO. The effect of oxygen on sodium excretion in hypoxemic patients with chronic obstructive lung disease. Chest 1990; 97 (4): 840-4.Google Scholar

  • 23. CAMPBELL EJM, SHORT DS. The cause of edema in “corpulmonale” Lancet 1960; I: 1184-6.CrossrefGoogle Scholar

  • 24. REINECK HJ, STEIN JH. Sodium metabolism. In: Maxwell MH, Kleeman CR, Narins RG, eds. Clinical disorders of fluid and electrolyte metabolism. New York: McGraw-Hill, 1987: 39-40.Google Scholar

  • 25. BATHOORN E, KERSTJENS H, POSTMA D, TIMENS W, MACNEE W. Airways inflammation and treatment during acute exacerbations of COPD. Int J Chron Obstruct Pulmon Dis 2008; 3(2): 217-29.Google Scholar

About the article

Received: 2014-06-30

Published Online: 2015-12-10

Published in Print: 2015-12-01


Citation Information: Romanian Journal Of Internal Medicine, ISSN (Online) 1220-4749, DOI: https://doi.org/10.1515/rjim-2015-0044.

Export Citation

© 2015 Fariba Rezaeetalab et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in