Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Recreational Mathematics Magazine

2 Issues per year

Mathematical Citation Quotient (MCQ) 2016: 0.05

Open Access
See all formats and pricing
More options …

Construction and Enumeration of Circuits Capable of Guiding a Miniature Vehicle

Jérôme Bastien
Published Online: 2016-12-08 | DOI: https://doi.org/10.1515/rmm-2016-0006


In contrast to traditional toy tracks, a patented system allows the creation of a large number of tracks with a minimal number of pieces, and whose loops always close properly. These circuits strongly resemble traditional self-avoiding polygons (whose explicit enumeration has not yet been resolved for an arbitrary number of squares) yet there are numerous differences, notably the fact that the geometric constraints are different than those of self-avoiding polygons. We present the methodology allowing the construction and enumeration of all of the possible tracks containing a given number of pieces. For small numbers of pieces, the exact enumeration will be treated. For greater numbers of pieces, only an estimation will be offered. In the latter case, a randomly construction of circuits is also given. We will give some routes for generalizations for similar problems.

Keywords: closed paths; toy tracks; combinatorics; exact and asymptotic enumeration


  • [1] Bastien, J. “Circuit apte à guider un véhicule miniature”, Patent FR2990627, University Lyon I, May 15, 2012. http://bases-brevets.inpi.fr/fr/document/FR2990627.html?p=6&s=1423127185056&cHash=cfbc2dad6e2e39808596f86b89117583Google Scholar

  • [2] Bastien, J. “Circuit suitable for guiding a miniature véhicle [Circuit apte à guider un véhicule miniature]”, Patent WO2013171170, University Lyon I, May 13, 2013. http://bases-brevets.inpi.fr/fr/document/WO2013171170.html?p=6&s=1423127405077&cHash=6947975351b6d1cf7dd56d4e749a98bbGoogle Scholar

  • [3] Bastien, J. Comment concevoir un circuit de train miniature qui se reboucle toujours bien?, Transparents présentés lors du Forum des mathématiques 2015 à l’Académie des sciences, belles-lettres et arts de Lyon, 73 pages, 2015. http://utbmjb.chez-alice.fr/recherche/brevet_rail/expose_forum_2015.pdfGoogle Scholar

  • [4] Bastien, J. Comment concevoir un circuit de train miniature qui se reboucle toujours bien ?-Deux questions d’algèbre et de dénombrement, Transparents présentés au “séminaire détente” de la Maison des Mathématiques et de l’Informatique, Lyon, 80 pages, 2015. http://utbmjb.chez-alice.fr/recherche/brevet_rail/expose_MMI_2015.pdfGoogle Scholar

  • [5] Clisby, N., Jensen, I. “A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice”, in J. Phys. A 45.11, pages 115202 and 15, doi:CrossrefGoogle Scholar

  • [6] Farin, G., Hoschek, J., Kim, M.-S. (editors). Handbook of computer aided geometric design, North-Holland, Amsterdam, pages xxviii+820, 2002.Google Scholar

  • [7] Guttmann, A. J. “Self-Avoiding Walks and Polygons-An Overview”, arXiv:1212.3448, 2012.Google Scholar

  • [8] Guttmann, A. J. “Self-Avoiding Walks and Polygons-An Overview”, in Asia Pacific Mathematics Newsletter 2.4, 2012. http://www.asiapacific-mathnews.com/02/0204/0001_0010.pdfGoogle Scholar

  • [9] Holweck, F., Martin, J.-N. Géométries pour l’ingénieur (french) [Geometries for the engineer], Paris, Ellipses, 2013.Google Scholar

  • [10] Jensen, I. “A parallel algorithm for the enumeration of self-avoiding polygons on the square lattice” in J. Phys. A 36.21, 5731-5745, doi:CrossrefGoogle Scholar

  • [11] Jensen, I. “Enumeration of self-avoiding walks on the square lattice”, in J. Phys. A 37.21, 5503-5524. doi:CrossrefGoogle Scholar

  • [12] Jensen, I. “Improved lower bounds on the connective constants for two-dimensional self-avoiding walks”, in J. Phys. A 37.48, 11521-11529, doi:CrossrefGoogle Scholar

  • [13] Jensen, I., Guttmann, A. J. “Self-avoiding polygons on the square lattice”, in J. Phys. A 32.26, 4867-4876, doi:CrossrefGoogle Scholar

  • [14] Lebossé, C. Hémery, C. Géométrie, Classe de Mathématiques (Programmes de 1945) (French) [Geometry. Classe de Mathématiques (1945 programs)], Paris, Jacques Gabay, 1997.Google Scholar

  • [15] Madras, N., Slade, G. The self-avoiding walk. Probability and its Applications, Birkh¨auser Boston, Inc., pages xiv+425, Boston, MA, 1993.Google Scholar

  • [16] D. Perrin. “Les courbes de Bézier (French) [Bézier curves]”, Notes for preparing the CAPES mathematics. http://www.math.u-psud.fr/~perrin/CAPES/geometrie/BezierDP.pdfGoogle Scholar

  • [17] G. Slade. “The self-avoiding walk: a brief survey”, in Surveys in stochastic processes. EMS Ser. Congr. Rep. Eur. Math. Soc., 181-199, doi:CrossrefGoogle Scholar

About the article

Published Online: 2016-12-08

Published in Print: 2016-12-01

Citation Information: Recreational Mathematics Magazine, Volume 3, Issue 6, Pages 5–42, ISSN (Online) 2182-1976, DOI: https://doi.org/10.1515/rmm-2016-0006.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in