Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Russian Journal of Numerical Analysis and Mathematical Modelling

Editor-in-Chief: Dymnikov, Valentin P. / Kuznetsov, Yuri

Managing Editor: Vassilevski, Yuri V.

Editorial Board: Agoshkov, Valeri I. / Amosov, Andrey A. / Kaporin, Igor E. / Kobelkov, Georgy M. / Mikhailov, Gennady A. / Repin, Sergey I. / Shaidurov, Vladimir V. / Shokin, Yuri I. / Tyrtyshnikov, Eugene E.

6 Issues per year


IMPACT FACTOR 2017: 0.662

CiteScore 2017: 0.71

SCImago Journal Rank (SJR) 2017: 0.302
Source Normalized Impact per Paper (SNIP) 2017: 0.929

Mathematical Citation Quotient (MCQ) 2017: 0.13

Online
ISSN
1569-3988
See all formats and pricing
More options …
Volume 31, Issue 1

Issues

Preconditioners for hierarchical matrices based on their extended sparse form

Darya A. Sushnikova / Ivan V. Oseledets
Published Online: 2016-02-16 | DOI: https://doi.org/10.1515/rnam-2016-0003

Abstract

In this paper we consider linear systems with dense-matrices which arise from numerical solution of boundary integral equations. Such matrices can be well-approximated with ℋ2-matrices. We propose several new preconditioners for such matrices that are based on the equivalent sparse extended form of ℋ2-matrices. In the numerical experiments we show that the most efficient approach is based on the so-called reverse-Schur preconditioning technique.

Keywords: ℋ2-matrix; integral equations; preconditioning

MSC 2010: 65R20; 65F08; 78M16

References

  • [1]

    S. Ambikasaran and E. Darve, The inverse fast multipole method. arXiv preprint, (2014).Google Scholar

  • [2]

    J. Bardhan, M. Altman, B. Tidor, and J. White, ‘Reverse-Schur’ approach to Optimization with Linear PDE constraints. Application to biomolecule analysis and design. J. Chem. Theory Comput. 5 (2009), No. 12, 3260–3278.Web of ScienceGoogle Scholar

  • [3]

    M. Bebendorf, Hierarchical LU decomposition-based preconditioners for BEM. Comput. 74 (2005), No. 3, 225–247.CrossrefGoogle Scholar

  • [4]

    S. Börm, Efficient Numerical Methods for Non-Local Operators: H2-matrix Compression, Algorithms and Analysis. European Mathematical Society, 2010.Google Scholar

  • [5]

    S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications, Eng. Anal. Bound Elem. 27 (2003), No. 5, 405–422.CrossrefGoogle Scholar

  • [6]

    S. Chandrasekaran, M. Gu, and W. Lyons, A fast adaptive solver for hierarchically semiseparable representations. Calcolo 42 (2005), No. 3–4, 171–185.CrossrefGoogle Scholar

  • [7]

    S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals, A fast solver for HSS representations via sparse matrices. SIAM J. Matrix Anal. Appl. 29 (2006), No. 1, 67–81.CrossrefGoogle Scholar

  • [8]

    S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. A. 28 (2006), No. 3, 603–622.CrossrefGoogle Scholar

  • [9]

    E. Corona, P.-G. Martinsson, and D. Zorin, An O(N) direct solver for integral equations on the plane. Appl. Comput. Harmon. A 38 (2015), No. 2, 284–317.CrossrefGoogle Scholar

  • [10]

    L. Greengard and V. Rokhlin, A fast algorithm for particle simulations. J. Comput. Phys. 73 (1987), No. 2, 325–348.CrossrefGoogle Scholar

  • [11]

    L. Greengard and V. Rokhlin, The Rapid Evaluation of Potential Fields in Three Dimensions. Springer, Berlin, 1988.Google Scholar

  • [12]

    W. Hackbusch and S. Borm, H2-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43 (2002), No. 1, 129–143.CrossrefGoogle Scholar

  • [13]

    J. L. Hess and A. M. Smith, Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. DTIC Document, 1962.Google Scholar

  • [14]

    K. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive skeletonization. SIAM J. Sci. Comput. 34 (2012), No. 5, A2507–A2532.Google Scholar

  • [15]

    P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix. SIAM J. Matrix Anal. A. 32 (2011), No. 4, 1251–1274.CrossrefWeb of ScienceGoogle Scholar

  • [16]

    A. Mikhalev and I. V. Oseledets, Adaptive nested cross approximation of non-local operators. arXiv preprint No. 1407.1572, (2013).Google Scholar

  • [17]

    A. Yu. Mikhalev, (2013), https://bitbucket.org/muxas/h2tools

  • [18]

    V. Rokhlin, Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60 (1985), No. 2, 187–207.CrossrefGoogle Scholar

  • [19]

    H. Samet, The quadtree and related hierarchical data structures. ACM Comput. Surv. 16 (1984), No. 2, 187–260.CrossrefGoogle Scholar

  • [20]

    Z. Sheng, P. Dewilde, and S. Chandrasekaran, Algorithms to solve hierarchically semi-separable systems. In: System Theory, the Schur Algorithm and Multidimensional Analysis. Birkhäuser, Basel, 2007.Google Scholar

  • [21]

    D. Stephen, R. M. Harris, B. P. Johnson, S. Kim, K. Nabors, M. A. Shulman, and J. K. White, A computer-aided design system for micro-electromechanical systems (MEMCAD). IEEE, Mater. Res. Soc. Symp. P. 1 (1992), No. 1, 3–13.Google Scholar

  • [22]

    E. E. Tyrtyshnikov, Mosaic-skeleton approximations, Calcolo 33 (1996), No. 1, 47–57.CrossrefGoogle Scholar

  • [23]

    J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. A. 31 (2009), No. 3, 1382–1411.Web of ScienceGoogle Scholar

About the article

Received: 2015-09-28

Accepted: 2015-11-24

Published Online: 2016-02-16

Published in Print: 2016-02-01


Funding: This work was supported by the Russian Science Foundation grant 14-11-00659.


Citation Information: Russian Journal of Numerical Analysis and Mathematical Modelling, Volume 31, Issue 1, Pages 29–40, ISSN (Online) 1569-3988, ISSN (Print) 0927-6467, DOI: https://doi.org/10.1515/rnam-2016-0003.

Export Citation

© 2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A.V. Panyukov, Kh.Z. Chaloob, and Ya.A. Mezal
Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics", 2018, Volume 10, Number 2, Page 28
[2]
Maharavo Randrianarivony
Applied Mathematics, 2016, Volume 07, Number 15, Page 1798

Comments (0)

Please log in or register to comment.
Log in