Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA and RNA Nanotechnology

formerly RNA Nanotechnolgy


Emerging Science

Open Access
Online
ISSN
2353-1770
See all formats and pricing
More options …

Engineered RNA Nanodesigns for Applications in RNA Nanotechnology

Kirill A. Afonin
  • Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Brian Lindsay
  • Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bruce A. Shapiro
Published Online: 2013-05-31 | DOI: https://doi.org/10.2478/rnan-2013-0001

Abstract

Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create de novo nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.

Keywords: RNA Nanotechnology; Self-Assembly; Functional RNA Nanoparticles; RNA Tectonics; Computational RNA Nano Design

  • Garibotti, A.V., Liao, S. & Seeman, N.C. A simple DNA-based translation system. Nano letters 7, 480-483 (2007). PubMedCrossrefGoogle Scholar

  • Seeman, N.C. Structural DNA nanotechnology: an overview. Methods in molecular biology 303, 143-166 (2005). Google Scholar

  • Lin, C., Liu, Y. & Yan, H. Designer DNA nanoarchitectures. Biochemistry 48, 1663-1674 (2009). CrossrefPubMedGoogle Scholar

  • Seeman, N.C. Nanomaterials based on DNA. Annual review of biochemistry 79, 65-87 (2010). CrossrefGoogle Scholar

  • Feldkamp, U. & Niemeyer, C.M. Rational design of DNA nanoarchitectures. Angewandte Chemie 45, 1856-1876 (2006). CrossrefGoogle Scholar

  • Lin, C., Liu, Y., Rinker, S. & Yan, H. DNA tile based self-assembly: building complex nanoarchitectures. Chemphyschem 7, 1641-1647 (2006). CrossrefPubMedGoogle Scholar

  • Chen, J.H. & Seeman, N.C. The electrophoretic properties of a DNA cube and its substructure catenanes. Electrophoresis 12, 607-611 (1991). CrossrefPubMedGoogle Scholar

  • Andersen, F.F. et al. Assembly and structural analysis of a covalently closed nano-scale DNA cage. Nucleic acids research 36, 1113-1119 (2008). CrossrefGoogle Scholar

  • Brucale, M. et al. Characterization and modulation of the hierarchical self-assembly of nanostructured DNA tiles into supramolecular polymers. Organic & biomolecular chemistry 4, 3427-3434 (2006). PubMedGoogle Scholar

  • Erben, C.M., Goodman, R.P. & Turberfield, A.J. A selfassembled DNA bipyramid. Journal of the American Chemical Society 129, 6992-6993 (2007). Google Scholar

  • Goodman, R.P. et al. Reconfigurable, braced, threedimensional DNA nanostructures. Nature nanotechnology 3, 93-96 (2008). CrossrefGoogle Scholar

  • He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198-201 (2008). Google Scholar

  • Licata, N.A. & Tkachenko, A.V. Self-assembling DNA-caged particles: nanoblocks for hierarchical self-assembly. Physical review 79, 011404 (2009). Google Scholar

  • Shih, W.M., Quispe, J.D. & Joyce, G.F. A 1.7-kilobase singlestranded DNA that folds into a nanoscale octahedron. Nature 427, 618-621 (2004). Google Scholar

  • Zhang, S. & Seeman, N.C. Symmetric Holliday junction crossover isomers. Journal of molecular biology 238, 658- 668 (1994). Google Scholar

  • Zimmermann, J., Cebulla, M.P., Monninghoff, S. & von Kiedrowski, G. Self-assembly of a DNA dodecahedron from 20 trisoligonucleotides with C(3h) linkers. Angewandte Chemie 47, 3626-3630 (2008). CrossrefGoogle Scholar

  • Chen, J.H. & Seeman, N.C. Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631- 633 (1991). Google Scholar

  • Aldaye, F.A., Palmer, A.L. & Sleiman, H.F. Assembling materials with DNA as the guide. Science 321, 1795-1799 (2008). Google Scholar

  • Erben, C.M., Goodman, R.P. & Turberfield, A.J. Singlemolecule protein encapsulation in a rigid DNA cage. Angewandte Chemie 45, 7414-7417 (2006). CrossrefGoogle Scholar

  • Bhatia, D. et al. Icosahedral DNA nanocapsules by modular assembly. Angewandte Chemie (International ed 48, 4134- 4137 (2009). CrossrefGoogle Scholar

  • Yang, H. et al. Metal-nucleic acid cages. Nature chemistry 1, 390-396 (2009). PubMedCrossrefGoogle Scholar

  • Lee, H. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature nanotechnology 7, 389-393 (2012). CrossrefPubMedGoogle Scholar

  • Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 (2006). Google Scholar

  • Andersen, E.S. et al. DNA origami design of dolphin-shaped structures with flexible tails. ACS nano 2, 1213-1218 (2008). PubMedCrossrefGoogle Scholar

  • Maune, H.T. et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nature nanotechnology 5, 61-66 (2010). PubMedCrossrefGoogle Scholar

  • Voigt, N.V. et al. Single-molecule chemical reactions on DNA origami. Nature nanotechnology 5, 200-203 (2010). PubMedCrossrefGoogle Scholar

  • Pal, S., Deng, Z., Ding, B., Yan, H. & Liu, Y. DNA-origamidirected self-assembly of discrete silver-nanoparticle architectures. Angewandte Chemie 49, 2700-2704 (2010). CrossrefGoogle Scholar

  • Kuzuya, A. et al. Programmed nanopatterning of organic/ inorganic nanoparticles using nanometer-scale wells embedded in a DNA origami scaffold. Small 6, 2664-2667 (2010). CrossrefGoogle Scholar

  • Ke, Y. et al. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container. Nano Lett (2009). PubMedCrossrefGoogle Scholar

  • Andersen, E.S. et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459, 73-76 (2009). Google Scholar

  • Zadegan, R.M. et al. Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami. ACS nano DOI: 10.1021/ nn303767b (2012). CrossrefGoogle Scholar

  • Douglas, S.M., Bachelet, I. & Church, G.M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831-834 (2012). Google Scholar

  • Dietz, H., Douglas, S.M. & Shih, W.M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725- 730 (2009). Google Scholar

  • Liedl, T., Hogberg, B., Tytell, J., Ingber, D.E. & Shih, W.M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature nanotechnology 5, 520-524 (2010). CrossrefPubMedGoogle Scholar

  • Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311-314 (2012). Google Scholar

  • Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078-1081 (1997). Google Scholar

  • Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607-609 (1996). Google Scholar

  • Mirkin, C.A. Programming the assembly of two- and threedimensional architectures with DNA and nanoscale inorganic building blocks. Inorganic chemistry 39, 2258-2272 (2000). CrossrefGoogle Scholar

  • Lin, C., Liu, Y. & Yan, H. Designer DNA Nanoarchitectures (dagger). Biochemistry (2009). CrossrefGoogle Scholar

  • Douglas, S.M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414-418 (2009). CrossrefPubMedGoogle Scholar

  • Pinheiro, A.V., Han, D., Shih, W.M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology 6, 763-772 (2011). CrossrefPubMedGoogle Scholar

  • Guo, P. The emerging field of RNA nanotechnology. Nature nanotechnology 5, 833-842 (2010). PubMedCrossrefGoogle Scholar

  • Chworos, A. et al. Building programmable jigsaw puzzles with RNA. Science (New York, N.Y 306, 2068-2072 (2004). Google Scholar

  • Westhof, E. & Massire, C. Structural biology. Evolution of RNA architecture. Science (New York, N.Y 306, 62-63 (2004). Google Scholar

  • Leontis, N.B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Current opinion in structural biology 16, 279-287 (2006). PubMedGoogle Scholar

  • Leontis, N.B. & Westhof, E. Analysis of RNA motifs. Current opinion in structural biology 13, 300-308 (2003). PubMedGoogle Scholar

  • Delebecque, C.J., Lindner, A.B., Silver, P.A. & Aldaye, F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 333, 470-474 (2011). Google Scholar

  • Rodrigo, G., Landrain, T.E. & Jaramillo, A. De novo automated design of small RNA circuits for engineering synthetic riboregulation in living cells. Proceedings of the National Academy of Sciences of the United States of America 109, 15271-15276 (2012). Google Scholar

  • Gallivan, J.P. Toward reprogramming bacteria with small molecules and RNA. Current opinion in chemical biology 11, 612-619 (2007). PubMedGoogle Scholar

  • Seshachar, B.R. & Dass, C.M. Evidence for the conversion of desoxyribonucleic acid (DNA) to ribonucleic acid (RNA) in Epistylis articulata From. (Ciliata: Peritricha). Experimental cell research 5, 248-250 (1953). CrossrefGoogle Scholar

  • Dounce, A.L. Nucleic acid template hypotheses. Nature 172, 541 (1953). Google Scholar

  • Geiduschek, E.P. & Haselkorn, R. Messenger RNA. Annual review of biochemistry 38, 647-676 (1969). CrossrefGoogle Scholar

  • Crick, F.H. The origin of the genetic code. Journal of molecular biology 38, 367-379 (1968). Google Scholar

  • Lacey, J.C., Jr. & Pruitt, K.M. Origin of the genetic code. Nature 223, 799-804 (1969). Google Scholar

  • Kruger, K. et al. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31, 147-157 (1982). CrossrefPubMedGoogle Scholar

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857 (1983). CrossrefGoogle Scholar

  • Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 (1998). PubMedCrossrefGoogle Scholar

  • Grabow, W.W. et al. RNA nanotechnology in nanomedicine. Nanomedicine and Drug Delivery 1, 208-221 (2012). Google Scholar

  • Jaeger, L. & Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Current opinion in structural biology 16, 531-543 (2006). PubMedGoogle Scholar

  • Bramsen, J.B. & Kjems, J. Development of Therapeutic- Grade Small Interfering RNAs by Chemical Engineering. Frontiers in genetics 3, 154 (2012). CrossrefGoogle Scholar

  • Krieg, A.M. Is RNAi dead? Mol Ther 19, 1001-1002 (2011). CrossrefPubMedGoogle Scholar

  • Chen, J. & Xie, J. Progress on RNAi-based molecular medicines. International journal of nanomedicine 7, 3971- 3980 (2012). PubMedCrossrefGoogle Scholar

  • Win, M.N. & Smolke, C.D. A modular and extensible RNAbased gene-regulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America 104, 14283-14288 (2007). Google Scholar

  • Afonin, K.A., Danilov, E.O., Novikova, I.V. & Leontis, N.B. TokenRNA: a new type of sequence-specific, labelfree fluorescent biosensor for folded RNA molecules. Chembiochem 9, 1902-1905 (2008). CrossrefGoogle Scholar

  • Stojanovic, M.N. & Kolpashchikov, D.M. Modular aptameric sensors. Journal of the American Chemical Society 126, 9266-9270 (2004). Google Scholar

  • Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nature biotechnology 24, 1027-1032 (2006). CrossrefPubMedGoogle Scholar

  • Callura, J.M., Dwyer, D.J., Isaacs, F.J., Cantor, C.R. & Collins, J.J. Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proceedings of the National Academy of Sciences of the United States of America 107, 15898-15903 (2010). Google Scholar

  • Lucks, J.B., Qi, L., Mutalik, V.K., Wang, D. & Arkin, A.P. Versatile RNA-sensing transcriptional regulators for engineering genetic networks. Proceedings of the National Academy of Sciences of the United States of America 108, 8617-8622 (2010). Google Scholar

  • Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nature reviews 10, 410- 422 (2009). CrossrefGoogle Scholar

  • Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nature biotechnology 25, 795- 801 (2007). CrossrefPubMedGoogle Scholar

  • Davis, J.H. et al. RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. Journal of molecular biology 351, 371-382 (2005). Google Scholar

  • Afonin, K.A. & Leontis, N.B. Generating new specific RNA interaction interfaces using C-loops. Journal of the American Chemical Society 128, 16131-16137 (2006). Google Scholar

  • Yingling, Y.G. & Shapiro, B.A. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano letters 7, 2328-2334 (2007). PubMedCrossrefGoogle Scholar

  • Geary, C., Baudrey, S. & Jaeger, L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic acids research 36, 1138-1152 (2008). CrossrefGoogle Scholar

  • Geary, C., Chworos, A. & Jaeger, L. Promoting RNA helical stacking via A-minor junctions. Nucleic acids research 39, 1066-1080 (2011). CrossrefGoogle Scholar

  • Shu, Y., Cinier, M., Shu, D. & Guo, P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 54, 204-214 (2011). CrossrefGoogle Scholar

  • Afonin, K.A., Lin, Y.P., Calkins, E.R. & Jaeger, L. Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic acids research 40, 2168-2180 (2012). CrossrefGoogle Scholar

  • Grabow, W.W., Zhuang, Z., Swank, Z.N., Shea, J.E. & Jaeger, L. The Right Angle (RA) Motif: A Prevalent Ribosomal RNA Structural Pattern Found in Group I Introns. Journal of molecular biology 424, 54-67 (2012). Google Scholar

  • Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science (New York, N.Y 249, 505-510 (1990). Google Scholar

  • Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822 (1990). Google Scholar

  • Afonin, K.A., Cieply, D.J. & Leontis, N.B. Specific RNA selfassembly with minimal paranemic motifs. Journal of the American Chemical Society 130, 93-102 (2008). Google Scholar

  • Breaker, R.R. Engineered allosteric ribozymes as biosensor components. Current opinion in biotechnology 13, 31-39 (2002). PubMedGoogle Scholar

  • Jaschke, A. Artificial ribozymes and deoxyribozymes. Current opinion in structural biology 11, 321-326 (2001). PubMedGoogle Scholar

  • Nimjee, S.M., Rusconi, C.P. & Sullenger, B.A. Aptamers: an emerging class of therapeutics. Annual review of medicine 56, 555-583 (2005). CrossrefGoogle Scholar

  • Xiao, Z. & Farokhzad, O.C. Aptamer-functionalized nanoparticles for medical applications: challenges and opportunities. ACS nano 6, 3670-3676 (2012). CrossrefPubMedGoogle Scholar

  • Thiel, K.W. & Giangrande, P.H. Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19, 209-222 (2009). PubMedCrossrefGoogle Scholar

  • Tucker, B.J. & Breaker, R.R. Riboswitches as versatile gene control elements. Current opinion in structural biology 15, 342-348 (2005). PubMedGoogle Scholar

  • Breaker, R.R. Prospects for riboswitch discovery and analysis. Molecular cell 43, 867-879 (2011). CrossrefPubMedGoogle Scholar

  • Pecot, C.V., Calin, G.A., Coleman, R.L., Lopez- Berestein, G. & Sood, A.K. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 11, 59-67 (2011). PubMedCrossrefGoogle Scholar

  • Petrocca, F. & Lieberman, J. Promise and challenge of RNA interference-based therapy for cancer. J Clin Oncol 29, 747- 754 (2011). CrossrefPubMedGoogle Scholar

  • Davis, M.E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070 (2010). Google Scholar

  • Kim, D.H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature biotechnology 23, 222- 226 (2005). CrossrefPubMedGoogle Scholar

  • Severcan, I. et al. A polyhedron made of tRNAs. Nature chemistry 2, 772-779 (2010). PubMedCrossrefGoogle Scholar

  • Bates, A.D. et al. Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNARNA interactions. Nano letters 6, 445-448 (2006). CrossrefGoogle Scholar

  • Khaled, A., Guo, S., Li, F. & Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano letters 5, 1797-1808 (2005). PubMedCrossrefGoogle Scholar

  • Ohno, H. et al. Synthetic RNA-protein complex shaped like an equilateral triangle. Nature nanotechnology 6, 116-120 (2011). CrossrefPubMedGoogle Scholar

  • Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. The EMBO journal 20, 4214-4221 (2001). PubMedCrossrefGoogle Scholar

  • Severcan, I., Geary, C., Verzemnieks, E., Chworos, A. & Jaeger, L. Square-shaped RNA particles from different RNA folds. Nano letters 9, 1270-1277 (2009). CrossrefPubMedGoogle Scholar

  • Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA (New York, N.Y 12, 83-93 (2006). CrossrefGoogle Scholar

  • Laing, C., Jung, S., Iqbal, A. & Schlick, T. Tertiary motifs revealed in analyses of higher-order RNA junctions. Journal of molecular biology 393, 67-82 (2009). Google Scholar

  • Nasalean, L., Baudrey, S., Leontis, N.B. & Jaeger, L. Controlling RNA self-assembly to form filaments. Nucleic acids research 34, 1381-1392 (2006). CrossrefGoogle Scholar

  • Afonin, K.A. et al. Co-transcriptional Assembly of Chemically Modified RNA Nanoparticles Functionalized with siRNAs. Nano letters (2012). CrossrefPubMedGoogle Scholar

  • Grabow, W.W. et al. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano letters 11, 878- 887 (2011). CrossrefPubMedGoogle Scholar

  • Afonin, K.A. et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology 5, 676- 682 (2010). CrossrefPubMedGoogle Scholar

  • Dibrov, S.M., McLean, J., Parsons, J. & Hermann, T. Selfassembling RNA square. Proceedings of the National Academy of Sciences of the United States of America 108, 6405-6408 (2011). Google Scholar

  • Afonin, K.A. et al. Self-assembly of functionalized RNA nanoparticles demonstrating potential advancements in automated nanomedicine. Nat Protoc (2011). CrossrefGoogle Scholar

  • Haque, F. et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano today 7, 245- 257 (2012). PubMedCrossrefGoogle Scholar

  • Gugliotti, L.A., Feldheim, D.L. & Eaton, B.E. RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304, 850-852 (2004). Google Scholar

  • Petros, R.A. & DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9, 615-627 (2010). PubMedCrossrefGoogle Scholar

  • Shukla, G.C. et al. A Boost for the Emerging Field of RNA Nanotechnology. ACS nano 5, 3405-3418 (2011). CrossrefPubMedGoogle Scholar

  • Ferrari, M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5, 161-171 (2005). CrossrefPubMedGoogle Scholar

  • Farokhzad, O.C. & Langer, R. Impact of nanotechnology on drug delivery. ACS nano 3, 16-20 (2009). CrossrefPubMedGoogle Scholar

  • Westhof, E., Masquida, B. & Jaeger, L. RNA tectonics: towards RNA design. Folding & design 1, R78-88 (1996). Google Scholar

  • Hansma, H.G., Oroudjev, E., Baudrey, S. & Jaeger, L. TectoRNA and ‘kissing-loop’ RNA: atomic force microscopy of self-assembling RNA structures. Journal of microscopy 212, 273-279 (2003). Google Scholar

  • Jaeger, L., Westhof, E. & Leontis, N.B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic acids research 29, 455-463 (2001). CrossrefGoogle Scholar

  • Shu, D., Huang, L.P., Hoeprich, S. & Guo, P. Construction of phi29 DNA-packaging RNA monomers, dimers, and trimers with variable sizes and shapes as potential parts for nanodevices. Journal of nanoscience and nanotechnology 3, 295-302 (2003). Google Scholar

  • Guo, S., Tschammer, N., Mohammed, S. & Guo, P. Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Human gene therapy 16, 1097-1109 (2005). CrossrefGoogle Scholar

  • Hoeprich, S. & Guo, P. Computer modeling of threedimensional structure of DNA-packaging RNA (pRNA) monomer, dimer, and hexamer of Phi29 DNA packaging motor. The Journal of biological chemistry 277, 20794- 20803 (2002). Google Scholar

  • Simpson, A.A. et al. Structure of the bacteriophage phi29 DNA packaging motor. Nature 408, 745-750 (2000). Google Scholar

  • Shu, D., Zhang, H., Jin, J. & Guo, P. Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. The EMBO journal 26, 527-537 (2007). CrossrefGoogle Scholar

  • Guo, P., Haque, F., Hallahan, B., Reif, R. & Li, H. Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic acid therapeutics 22, 226-245. PubMedGoogle Scholar

  • Cayrol, B. et al. A Nanostructure Made of a Bacterial Noncoding RNA. Journal of the American Chemical Society 131, 17270–17276 (2009). Google Scholar

  • Bindewald, E., Afonin, K., Jaeger, L. & Shapiro, B.A. Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS nano 5, 9542-9551 (2011). PubMedCrossrefGoogle Scholar

  • Bindewald, E., Grunewald, C., Boyle, B., O’Connor, M. & Shapiro, B.A. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. Journal of molecular graphics & modelling 27, 299-308 (2008). Google Scholar

  • Shu, D., Shu, Y., Haque, F., Abdelmawla, S. & Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nature nanotechnology 6, 658-667 (2011). PubMedCrossrefGoogle Scholar

  • Bindewald, E., Hayes, R., Yingling, Y.G., Kasprzak, W. & Shapiro, B.A. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic acids research 36, D392-397 (2008). CrossrefGoogle Scholar

  • Berman, H.M., Gelbin, A. & Westbrook, J. Nucleic acid crystallography: a view from the nucleic acid database. Progress in biophysics and molecular biology 66, 255-288 (1996). PubMedGoogle Scholar

  • Klosterman, P.S., Hendrix, D.K., Tamura, M., Holbrook, S.R. & Brenner, S.E. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Nucleic acids research 32, 2342-2352 (2004). CrossrefGoogle Scholar

  • Tamura, M. et al. SCOR: Structural Classification of RNA, version 2.0. Nucleic acids research 32, D182-184 (2004). CrossrefGoogle Scholar

  • Jossinet, F., Ludwig, T.E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics (Oxford, England) 26, 2057-2059. Google Scholar

  • Martinez, H.M., Maizel, J.V., Jr. & Shapiro, B.A. RNA2D3D: a program for generating, viewing, and comparing 3-dimensional models of RNA. Journal of biomolecular structure & dynamics 25, 669-683 (2008). Google Scholar

  • Xia, Z., Gardner, D.P., Gutell, R.R. & Ren, P. Coarsegrained model for simulation of RNA three-dimensional structures. The journal of physical chemistry 114, 13497- 13506. Google Scholar

  • Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis. Journal of computational chemistry 25, 1605-1612 (2004). Google Scholar

  • Grell, L., Parkin, C., Slatest, L. & Craig, P.A. EZ-Viz, a tool for simplifying molecular viewing in PyMOL. Biochem Mol Biol Educ 34, 402-407 (2006). PubMedCrossrefGoogle Scholar

  • Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F. & Farokhzad, O.C. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chemical Society reviews 41, 2971-3010. PubMedCrossrefGoogle Scholar

  • Bramsen, J.B. et al. Improved silencing properties using small internally segmented interfering RNAs. Nucleic acids research 35, 5886-5897 (2007). CrossrefGoogle Scholar

  • Rose, S.D. et al. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic acids research 33, 4140-4156 (2005). CrossrefGoogle Scholar

  • Grimm, D. & Kay, M.A. Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15, 878-888 (2007). PubMedGoogle Scholar

  • Liu, Y.P. et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 17, 1712-1723 (2009). CrossrefGoogle Scholar

  • Mulhbacher, J., St-Pierre, P. & Lafontaine, D.A. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 10, 551-556 (2010). PubMedCrossrefGoogle Scholar

  • Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456- 460 (2008). Google Scholar

  • McNamara, J.O., 2nd et al. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature biotechnology 24, 1005-1015 (2006). CrossrefGoogle Scholar

  • Zhou, J., Li, H., Li, S., Zaia, J. & Rossi, J.J. Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16, 1481-1489 (2008). CrossrefGoogle Scholar

  • Dassie, J.P. et al. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMAexpressing tumors. Nature biotechnology 27, 839-849 (2009). CrossrefPubMedGoogle Scholar

  • Topp, S. & Gallivan, J.P. Emerging applications of riboswitches in chemical biology. ACS Chem Biol 5, 139-148 (2010). CrossrefPubMedGoogle Scholar

  • Gu, F. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences of the United States of America 105, 2586-2591 (2008). Google Scholar

  • Abe, N., Abe, H. & Ito, Y. Dumbbell-shaped nanocircular RNAs for RNA interference. Journal of the American Chemical Society 129, 15108-15109 (2007). Google Scholar

  • Afonin, K.A. et al. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nature nanotechnology 8, 296-304 (2013). CrossrefPubMedGoogle Scholar

  • Hoerter, J.A., Krishnan, V., Lionberger, T.A. & Walter, N.G. siRNA-like double-stranded RNAs are specifically protected against degradation in human cell extract. PLoS One 6, e20359 (2011). CrossrefGoogle Scholar

About the article


Received: 2012-12-19

Accepted: 2013-04-18

Published Online: 2013-05-31


Citation Information: DNA and RNA Nanotechnology, Volume 1, Issue 1, ISSN (Online) 2353-1770, DOI: https://doi.org/10.2478/rnan-2013-0001.

Export Citation

©2013 . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Justin R. Halman, Emily Satterwhite, Brandon Roark, Morgan Chandler, Mathias Viard, Anna Ivanina, Eckart Bindewald, Wojciech K. Kasprzak, Martin Panigaj, My N. Bui, Jacob S. Lu, Johann Miller, Emil F. Khisamutdinov, Bruce A. Shapiro, Marina A. Dobrovolskaia, and Kirill A. Afonin
Nucleic Acids Research, 2017, Page gkx008
[2]
Congzhe Su, Jeffery D. Weir, Fei Zhang, Hao Yan, and Teresa Wu
BMC Bioinformatics, 2019, Volume 20, Number 1
[4]
Daniel L. Jasinski, Hui Li, and Peixuan Guo
Molecular Therapy, 2018, Volume 26, Number 3, Page 784
[5]
Sijin Guo, Hui Li, Mengshi Ma, Jian Fu, Yizhou Dong, and Peixuan Guo
Molecular Therapy - Nucleic Acids, 2017, Volume 9, Page 399
[6]
Mohammad Amin Alibakhshi, Justin R. Halman, James Wilson, Aleksei Aksimentiev, Kirill A. Afonin, and Meni Wanunu
ACS Nano, 2017
[7]
Daniel Jasinski, Farzin Haque, Daniel W Binzel, and Peixuan Guo
ACS Nano, 2017, Volume 11, Number 2, Page 1142
[8]
Jaimie Marie Stewart, Mathias Viard, Hari K. K. Subramanian, Brandon K. Roark, Kirill A. Afonin, and Elisa Franco
Nanoscale, 2016, Volume 8, Number 40, Page 17542
[9]
Kasra Zandi, Gregory Butler, and Nawwaf Kharma
Frontiers in Genetics, 2016, Volume 7
[10]
Stefan Badelt, Christoph Flamm, and Ivo L. Hofacker
Artificial Life, 2016, Volume 22, Number 2, Page 172
[11]
Eckart Bindewald, Kirill A. Afonin, Mathias Viard, Paul Zakrevsky, Taejin Kim, and Bruce A. Shapiro
Nano Letters, 2016, Volume 16, Number 3, Page 1726
[12]
Kirill A. Afonin, Mathias Viard, Philip Tedbury, Eckart Bindewald, Lorena Parlea, Marshall Howington, Melissa Valdman, Alizah Johns-Boehme, Cara Brainerd, Eric O. Freed, and Bruce A. Shapiro
Nano Letters, 2016, Volume 16, Number 3, Page 1746
[13]
Wade W. Grabow and Luc Jaeger
Accounts of Chemical Research, 2014, Volume 47, Number 6, Page 1871
[14]
Kirill A. Afonin, Wojciech K. Kasprzak, Eckart Bindewald, Maria Kireeva, Mathias Viard, Mikhail Kashlev, and Bruce A. Shapiro
Accounts of Chemical Research, 2014, Volume 47, Number 6, Page 1731

Comments (0)

Please log in or register to comment.
Log in