Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA and RNA Nanotechnology

formerly RNA Nanotechnolgy


Emerging Science

Open Access
Online
ISSN
2353-1770
See all formats and pricing
More options …

Triggering RNAi with multifunctional RNA nanoparticles and their delivery

Bich Ngoc Dao / Mathias Viard / Angelica N. Martins / Wojciech K. Kasprzak / Bruce A. Shapiro / Kirill A. Afonin
Published Online: 2015-07-27 | DOI: https://doi.org/10.1515/rnan-2015-0001

Abstract

Proteins are considered to be the key players in structure, function, and metabolic regulation of our bodies. The mechanisms used in conventional therapies often rely on inhibition of proteins with small molecules, but another promising method to treat disease is by targeting the corresponding mRNAs. In 1998, Craig Mellow and Andrew Fire discovered dsRNA-mediated gene silencing via RNA interference or RNAi. This discovery introduced almost unlimited possibilities for new gene silencing methods, thus opening new doors to clinical medicine. RNAi is a biological process that inhibits gene expression by targeting the mRNA. RNAi-based therapeutics have several potential advantages (i) a priori ability to target any gene, (ii) relatively simple design process, (iii) sitespecificity, (iv) potency, and (v) a potentially safe and selective knockdown of the targeted cells. However, the problem lies within the formulation and delivery of RNAi therapeutics including rapid excretion, instability in the bloodstream, poor cellular uptake, and inefficient intracellular release. In an attempt to solve these issues, different types of RNAi therapeutic delivery strategies including multifunctional RNA nanoparticles are being developed. In this mini-review, we will briefly describe some of the current approaches.

Keywords : RNA nanotechnology; RNA nanoparticles; RNA/DNA hybrids; RNA interference; siRNA; delivery

References

  • Google Scholar

  • [1] Social Security. http://www.ssa.gov/planners/lifeexpectancy. html (accessed March 6 2015). Google Scholar

  • [2] Castanotto, D.; Rossi, J. J. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009, 457, 426-433. Google Scholar

  • [3] Venkataraman, S.; Dirks, R. M.; Ueda, C. T.; Pierce, N. A. Selective cell death mediated by small conditional RNAs. Proc Natl Acad Sci U S A 2010, 107, 16777-16782. CrossrefGoogle Scholar

  • [4] Win, M. N.; Smolke, C. D. Higher-order cellular information processing with synthetic RNA devices. Science 2008, 322, 456-460. Google Scholar

  • [5] Soutschek, J.; Akinc, A.; Bramlage, B.; Charisse, K.; Constien, R.; Donoghue, M.; Elbashir, S.; Geick, A.; Hadwiger, P.; Harborth, J., et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004, 432, 173-178. Google Scholar

  • [6] Fire, A.; Xu, S.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806-811. Google Scholar

  • [7] Davis, M. E.; Zuckerman, J. E.; Choi, C. H.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067-1070. Google Scholar

  • [8] World of RNAi Therapeutics. https://www.google.com/maps/d/ viewer?oe=UTF8&source=embed&ie=UTF8&msa=0&mid=zr- Ht4ReTX3o.kFQo_CkRb9AQ. Google Scholar

  • [9] Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281-297. CrossrefGoogle Scholar

  • [10] Lee, Y.; Kim, M.; Han, J.; Yeom, K. H.; Lee, S.; Baek, S. H.; Kim, V. N. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal 2004, 23, 4051-4060. CrossrefGoogle Scholar

  • [11] Gregory, R. I.; Chendrimada, T. P.; Shiekhattar, R. MicroRNA biogenesis: isolation and characterization of the microprocessor complex. Methods in molecular biology 2006, 342, 33-47. Google Scholar

  • [12] Murchison, E. P.; Hannon, G. J. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Current opinion in cell biology 2004, 16, 223-229. Google Scholar

  • [13] Lund, E.; Dahlberg, J. E. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harbor symposia on quantitative biology 2006, 71, 59-66. Google Scholar

  • [14] Ji, X. The mechanism of RNase III action: how dicer dices. Current topics in microbiology and immunology 2008, 320, 99-116. Google Scholar

  • [15] Macrae, I. J.; Zhou, K.; Li, F.; Repic, A.; Brooks, A. N.; Cande, W. Z.; Adams, P. D.; Doudna, J. A. Structural basis for doublestranded RNA processing by Dicer. Science 2006, 311, 195-198. Google Scholar

  • [16] Schwarz, D. S.; Hutvagner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P. D. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115, 199-208. CrossrefGoogle Scholar

  • [17] Khvorova, A.; Reynolds, A.; Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003, 115, 209-216. CrossrefGoogle Scholar

  • [18] Lin, S. L.; Chang, D.; Ying, S. Y. Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene 2005, 356, 32-38. Google Scholar

  • [19] Pratt, A. J.; MacRae, I. J. The RNA-induced silencing complex: a versatile gene-silencing machine. The Journal of biological chemistry 2009, 284, 17897-17901. Google Scholar

  • [20] Xiang, S.; Fruehauf, J.; Li, C. J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nature biotechnology 2006, 24, 697-702. CrossrefGoogle Scholar

  • [21] Tokatlian, T.; Segura, T. siRNA applications in nanomedicine. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2010, 2, 305-315. Google Scholar

  • [22] Siolas, D.; Lerner, C.; Burchard, J.; Ge, W.; Linsley, P. S.; Paddison, P. J.; Hannon, G. J.; Cleary, M. A. Synthetic shRNAs as potent RNAi triggers. Nature biotechnology 2005, 23, 227-231. CrossrefGoogle Scholar

  • [23] Whitehead, K. A.; Dahlman, J. E.; Langer, R. S.; Anderson, D. G. Silencing or stimulation? siRNA delivery and the immune system. Annual review of chemical and biomolecular engineering 2011, 2, 77-96. Google Scholar

  • [24] Wang, Z.; Rao, D. D.; Senzer, N.; Nemunaitis, J. RNA interference and cancer therapy. Pharmaceutical research 2011, 28, 2983-2995. CrossrefGoogle Scholar

  • [25] Bramsen, J. B.; Kjems, J. Chemical modification of small interfering RNA. Methods in molecular biology 2011, 721, 77-103. Google Scholar

  • [26] Bramsen, J. B.; Kjems, J. Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering. Front Genet 2012, 3. Google Scholar

  • [27] Bramsen, J. B.; Laursen, M. B.; Damgaard, C. K.; Lena, S. W.; Babu, B. R.; Wengel, J.; Kjems, J. Improved silencing properties using small internally segmented interfering RNAs. Nucleic acids research 2007, 35, 5886-5897. CrossrefGoogle Scholar

  • [28] Elbashir, S. M.; Lendeckel, W.; Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001, 15, 188-200. Google Scholar

  • [29] Pecot, C. V.; Calin, G. A.; Coleman, R. L.; Lopez-Berestein, G.; Sood, A. K. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 2011, 11, 59-67. CrossrefGoogle Scholar

  • [30] Rose, S. D.; Kim, D. H.; Amarzguioui, M.; Heidel, J. D.; Collingwood, M. A.; Davis, M. E.; Rossi, J. J.; Behlke, M. A. Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic acids research 2005, 33, 4140-4156. CrossrefGoogle Scholar

  • [31] Kim, D. H.; Behlke, M. A.; Rose, S. D.; Chang, M. S.; Choi, S.; Rossi, J. J. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature biotechnology 2005, 23, 222-226. CrossrefGoogle Scholar

  • [32] Afonin, K. A.; Grabow, W. W.; Walker, F. M.; Bindewald, E.; Dobrovolskaia, M. A.; Shapiro, B. A.; Jaeger, L. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nature protocols 2011, 6, 2022-2034. CrossrefGoogle Scholar

  • [33] Afonin, K. A.; Kasprzak, W. K.; Bindewald, E.; Kireeva, M.; Viard, M.; Kashlev, M.; Shapiro, B. A. In silico design and enzymatic synthesis of functional RNA nanoparticles. Accounts of chemical research 2014, 47, 1731-1741. Google Scholar

  • [34] Afonin, K. A.; Lindsay, B.; Shapiro, B. A. Engineered RNA Nanodesigns for Applications in RNA Nanotechnology. RNA nanotechnology 2013, 1-15. Google Scholar

  • [35] Afonin, K. A.; Viard, M.; Koyfman, A. Y.; Martins, A. N.; Kasprzak, W. K.; Panigaj, M.; Desai, R.; Santhanam, A.; Grabow, W. W.; Jaeger, L., et al. Multifunctional RNA nanoparticles. Nano letters 2014, 14, 5662-5671. CrossrefGoogle Scholar

  • [36] Guo, P. The emerging field of RNA nanotechnology. Nature nanotechnology 2010, 5, 833-842. CrossrefGoogle Scholar

  • [37] Liu, Y. P.; von Eije, K. J.; Schopman, N. C.; Westerink, J. T.; ter Brake, O.; Haasnoot, J.; Berkhout, B. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Molecular therapy : the journal of the American Society of Gene Therapy 2009, 17, 1712-1723. Google Scholar

  • [38] Nakashima, Y.; Abe, H.; Abe, N.; Aikawa, K.; Ito, Y. Branched RNA nanostructures for RNA interference. Chem Commun (Camb) 2011. Google Scholar

  • [39] Lee, H.; Lytton-Jean, A. K.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M., et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nature nanotechnology 2012, 7, 389-393. CrossrefGoogle Scholar

  • [40] Shukla, G. C.; Haque, F.; Tor, Y.; Wilhelmsson, L. M.; Toulme, J. J.; Isambert, H.; Guo, P.; Rossi, J. J.; Tenenbaum, S. A.; Shapiro, B. A. A Boost for the Emerging Field of RNA Nanotechnology. ACS nano 2011, 5, 3405-3418. CrossrefGoogle Scholar

  • [41] Grabow, W. W.; Jaeger, L. RNA self-assembly and RNA nanotechnology. Accounts of chemical research 2014, 47, 1871-1880. Google Scholar

  • [42] Bindewald, E.; Afonin, K.; Jaeger, L.; Shapiro, B. A. Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots. ACS nano 2011, 5, 9542-9551. CrossrefGoogle Scholar

  • [43] Bindewald, E.; Grunewald, C.; Boyle, B.; O‘Connor, M.; Shapiro, B. A. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler. J Mol Graph Model 2008, 27, 299-308. CrossrefGoogle Scholar

  • [44] Bindewald, E.; Hayes, R.; Yingling, Y. G.; Kasprzak, W.; Shapiro, B. A. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic acids research 2008, 36, D392-397. Google Scholar

  • [45] Afonin, K. A.; Danilov, E. O.; Novikova, I. V.; Leontis, N. B. TokenRNA: a new type of sequence-specific, label-free fluorescent biosensor for folded RNA molecules. Chembiochem : a European journal of chemical biology 2008, 9, 1902-1905. Google Scholar

  • [46] Rogers, T. A.; Andrews, G. E.; Jaeger, L.; Grabow, W. W. Fluorescent monitoring of RNA assembly and processing using the split-spinach aptamer. ACS synthetic biology 2015, 4, 162-166. Google Scholar

  • [47] Jaeger, L.; Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr Opin Struct Biol 2006, 16, 531-543. Google Scholar

  • [48] Jaeger, L.; Leontis, N. B. Tecto-RNA: One-Dimensional Self-Assembly through Tertiary Interactions This work was carried out in Strasbourg with the support of grants to N.B.L. from the NIH (1R15 GM55898) and the NIH Fogarty Institute (1-F06-TW02251-01) and the support of the CNRS to L.J. The authors wish to thank Eric Westhof for his support and encouragement of this work. Angewandte Chemie 2000, 39, 2521-2524. Google Scholar

  • [49] Jaeger, L.; Westhof, E.; Leontis, N. B. TectoRNA: modular assembly units for the construction of RNA nano-objects. Nucleic acids research 2001, 29, 455-463. CrossrefGoogle Scholar

  • [50] Ishikawa, J.; Furuta, H.; Ikawa, Y. RNA tectonics (tectoRNA) for RNA nanostructure design and its application in synthetic biology. Wiley interdisciplinary reviews. RNA 2013, 4, 651-664. Google Scholar

  • [51] Yamashita, K.; Tanaka, T.; Furuta, H.; Ikawa, Y. TectoRNP: self-assembling RNAs with peptide recognition motifs as templates for chemical peptide ligation. Journal of peptide science : an official publication of the European Peptide Society 2012, 18, 635-642. Google Scholar

  • [52] Chworos, A.; Severcan, I.; Koyfman, A. Y.; Weinkam, P.; Oroudjev, E.; Hansma, H. G.; Jaeger, L. Building programmable jigsaw puzzles with RNA. Science 2004, 306, 2068-2072. CrossrefGoogle Scholar

  • [53] Severcan, I.; Geary, C.; Jaeger, L.; Bindewald, E.; Kasprzak, W.; Shapiro, B. A.: Computational and Experimental RNA Nanoparticle Design. In Automation in Genomics and Proteomics: An Engineering Case-Based Approach; Alterovitz, G., Ramoni, M., Benson, R., Eds.; Wiley Publishing: Hoboken, NJ, 2009; pp 193-220. Google Scholar

  • [54] Severcan, I.; Geary, C.; Verzemnieks, E.; Chworos, A.; Jaeger, L. Square-shaped RNA particles from different RNA folds. Nano letters 2009, 9, 1270-1277. CrossrefGoogle Scholar

  • [55] Geary, C.; Baudrey, S.; Jaeger, L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic acids research 2008, 36, 1138-1152. Google Scholar

  • [56] Geary, C.; Chworos, A.; Jaeger, L. Promoting RNA helical stacking via A-minor junctions. Nucleic acids research 2011, 39, 1066-1080. CrossrefGoogle Scholar

  • [57] Geary, C.; Rothemund, P. W.; Andersen, E. S. RNA nanostructures. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014, 345, 799-804. Google Scholar

  • [58] Ohno, H.; Kobayashi, T.; Kabata, R.; Endo, K.; Iwasa, T.; Yoshimura, S. H.; Takeyasu, K.; Inoue, T.; Saito, H. Synthetic RNA-protein complex shaped like an equilateral triangle. Nature nanotechnology 2011, 6, 116-120. CrossrefGoogle Scholar

  • [59] Grabow, W.; Jaeger, L. RNA modularity for synthetic biology. F1000prime reports 2013, 5, 46. Google Scholar

  • [60] Ko, S. H.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. Synergistic self-assembly of RNA and DNA molecules. Nat Chem 2010, 2, 1050-1055. CrossrefGoogle Scholar

  • [61] Hao, C.; Li, X.; Tian, C.; Jiang, W.; Wang, G.; Mao, C. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nature communications 2014, 5, 3890. Google Scholar

  • [62] Yu, J.; Liu, Z.; Jiang, W.; Wang, G.; Mao, C. De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nature communications 2015, 6, 5724. CrossrefGoogle Scholar

  • [63] Afonin, K. A.; Cieply, D. J.; Leontis, N. B. Specific RNA self-assembly with minimal paranemic motifs. Journal of the American Chemical Society 2008, 130, 93-102. Google Scholar

  • [64] Afonin, K. A.; Leontis, N. B. Generating new specific RNA interaction interfaces using C-loops. Journal of the American Chemical Society 2006, 128, 16131-16137. Google Scholar

  • [65] Afonin, K. A.; Lin, Y. P.; Calkins, E. R.; Jaeger, L. Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic acids research 2012, 40, 2168-2180. CrossrefGoogle Scholar

  • [66] Osada, E.; Suzuki, Y.; Hidaka, K.; Ohno, H.; Sugiyama, H.; Endo, M.; Saito, H. Engineering RNA-protein complexes with different shapes for imaging and therapeutic applications. ACS nano 2014, 8, 8130-8140. CrossrefGoogle Scholar

  • [67] Saito, H.; Inoue, T. RNA and RNP as new molecular parts in synthetic biology. Journal of biotechnology 2007, 132, 1-7. Google Scholar

  • [68] Saito, H.; Inoue, T. Synthetic biology with RNA motifs. The international journal of biochemistry & cell biology 2009, 41, 398-404. Google Scholar

  • [69] Shiohara, T.; Saito, H.; Inoue, T. A designed RNA selection: establishment of a stable complex between a target and selectant RNA via two coordinated interactions. Nucleic acids research 2009, 37, e23. CrossrefGoogle Scholar

  • [70] Ohno, H.; Inoue, T. Designed Regular Tetragon-Shaped RNA-Protein Complexes with Ribosomal Protein L1 for Bionanotechnology and Synthetic Biology. ACS nano 2015. Google Scholar

  • [71] Afonin, K. A.; Schultz, D.; Jaeger, L.; Gwinn, E.; Shapiro, B. A. Silver nanoclusters for RNA nanotechnology: steps towards visualization and tracking of RNA nanoparticle assemblies. Methods in molecular biology 2015, 1297, 59-66. Google Scholar

  • [72] Yingling, Y. G.; Shapiro, B. A. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano letters 2007, 7, 2328-2334. CrossrefGoogle Scholar

  • [73] Grabow, W. W.; Zakrevsky, P.; Afonin, K. A.; Chworos, A.; Shapiro, B. A.; Jaeger, L. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano letters 2011, 11, 878-887. CrossrefGoogle Scholar

  • [74] Afonin, K. A.; Kireeva, M.; Grabow, W. W.; Kashlev, M.; Jaeger, L.; Shapiro, B. A. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano letters 2012, 12, 5192-5195. CrossrefGoogle Scholar

  • [75] Guo, P.; Zhang, C.; Chen, C.; Garver, K.; Trottier, M. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Molecular cell 1998, 2, 149-155. CrossrefGoogle Scholar

  • [76] Binzel, D. W.; Khisamutdinov, E. F.; Guo, P. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 2014, 53, 2221-2231. Google Scholar

  • [77] Haque, F.; Shu, D.; Shu, Y.; Shlyakhtenko, L. S.; Rychahou, P. G.; Evers, B. M.; Guo, P. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano today 2012, 7, 245-257. CrossrefGoogle Scholar

  • [78] Khisamutdinov, E. F.; Jasinski, D. L.; Guo, P. RNA as a boilingresistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS nano 2014, 8, 4771-4781. CrossrefGoogle Scholar

  • [79] Khisamutdinov, E. F.; Li, H.; Jasinski, D. L.; Chen, J.; Fu, J.; Guo, P. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic acids research 2014, 42, 9996-10004. CrossrefGoogle Scholar

  • [80] Shu, D.; Shu, Y.; Haque, F.; Abdelmawla, S.; Guo, P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nature nanotechnology 2011, 6, 658-667. CrossrefGoogle Scholar

  • [81] Shu, Y.; Cinier, M.; Shu, D.; Guo, P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods 2011, 54, 204-214. CrossrefGoogle Scholar

  • [82] Shu, Y.; Haque, F.; Shu, D.; Li, W.; Zhu, Z.; Kotb, M.; Lyubchenko, Y.; Guo, P. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. Rna 2013, 19, 767-777. Google Scholar

  • [83] Feng, L.; Li, S. K.; Liu, H.; Liu, C. Y.; LaSance, K.; Haque, F.; Shu, D.; Guo, P. Ocular delivery of pRNA nanoparticles: distribution and clearance after subconjunctival injection. Pharmaceutical research 2014, 31, 1046-1058. CrossrefGoogle Scholar

  • [84] Reif, R.; Haque, F.; Guo, P. Fluorogenic RNA nanoparticles for monitoring RNA folding and degradation in real time in living cells. Nucleic acid therapeutics 2012, 22, 428-437. Google Scholar

  • [85] Tarapore, P.; Shu, Y.; Guo, P.; Ho, S. M. Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers. Molecular therapy : the journal of the American Society of Gene Therapy 2011, 19, 386-394. Google Scholar

  • [86] Jasinski, D. L.; Khisamutdinov, E. F.; Lyubchenko, Y. L.; Guo, P. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS nano 2014, 8, 7620-7629. CrossrefGoogle Scholar

  • [87] Khaled, A.; Guo, S.; Li, F.; Guo, P. Controllable self-assembly of nanoparticles for specific delivery of multiple therapeutic molecules to cancer cells using RNA nanotechnology. Nano letters 2005, 5, 1797-1808. CrossrefGoogle Scholar

  • [88] Afonin, K. A.; Bindewald, E.; Yaghoubian, A. J.; Voss, N.; Jacovetty, E.; Shapiro, B. A.; Jaeger, L. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature nanotechnology 2010, 5, 676-682. CrossrefGoogle Scholar

  • [89] Afonin, K. A.; Kasprzak, W.; Bindewald, E.; Puppala, P. S.; Diehl, A. R.; Hall, K. T.; Kim, T. J.; Zimmermann, M. T.; Jernigan, R. L.; Jaeger, L., et al. Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 2014, 67, 256-265. CrossrefGoogle Scholar

  • [90] Afonin, K. A.; Viard, M.; Kagiampakis, I.; Case, C. L.; Dobrovolskaia, M. A.; Hofmann, J.; Vrzak, A.; Kireeva, M.; Kasprzak, W. K.; KewalRamani, V. N., et al. Triggering of RNA Interference with RNA-RNA, RNA-DNA, and DNA-RNA Nanoparticles. ACS nano 2015, 9, 251-259. CrossrefGoogle Scholar

  • [91] Herrera-Carrillo, E.; Berkhout, B. Gene Therapy Strategies to Block HIV-1 Replication by RNA Interference. Advances in experimental medicine and biology 2015, 848, 71-95. Google Scholar

  • [92] Herrera-Carrillo, E.; Berkhout, B. The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene therapy 2015. Google Scholar

  • [93] Berkhout, B.; Sanders, R. W. Molecular strategies to design an escape-proof antiviral therapy. Antiviral research 2011, 92, 7-14. CrossrefGoogle Scholar

  • [94] Low, J. T.; Knoepfel, S. A.; Watts, J. M.; ter Brake, O.; Berkhout, B.; Weeks, K. M. SHAPE-directed discovery of potent shRNA inhibitors of HIV-1. Molecular therapy : the journal of the American Society of Gene Therapy 2012, 20, 820-828. Google Scholar

  • [95] ter Brake, O.; t Hooft, K.; Liu, Y. P.; Centlivre, M.; von Eije, K. J.; Berkhout, B. Lentiviral vector design for multiple shRNA expression and durable HIV-1 inhibition. Molecular therapy : the journal of the American Society of Gene Therapy 2008, 16, 557-564. Google Scholar

  • [96] Afonin, K. A.; Bindewald, E.; Kireeva, M.; Shapiro, B. A. Computational and Experimental Studies of Reassociating RNA/DNA Hybrids Containing Split Functionalities. Methods in enzymology 2015, 553, 313-334. Google Scholar

  • [97] Afonin, K. A.; Desai, R.; Viard, M.; Kireeva, M. L.; Bindewald, E.; Case, C. L.; Maciag, A. E.; Kasprzak, W. K.; Kim, T.; Sappe, A., et al. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities. Nucleic acids research 2014, 42, 2085-2097. CrossrefGoogle Scholar

  • [98] Afonin, K. A.; Viard, M.; Martins, A. N.; Lockett, S. J.; Maciag, A. E.; Freed, E. O.; Heldman, E.; Jaeger, L.; Blumenthal, R.; Shapiro, B. A. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nature nanotechnology 2013, 8, 296-304. CrossrefGoogle Scholar

  • [99] Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nature nanotechnology 2011, 6, 763-772. CrossrefGoogle Scholar

  • [100] Hehar, S. S.; Mason, J. D.; Stephen, A. B.; Washington, N.; Jones, N. S.; Jackson, S. J.; Bush, D. Twenty-four hour ambulatory nasal pH monitoring. Clinical otolaryngology and allied sciences 1999, 24, 24-25. Google Scholar

  • [101] Yang, W.; Peters, J. I.; Williams, R. O., 3rd. Inhaled nanoparticles--a current review. Int J Pharm 2008, 356, 239-247. Google Scholar

  • [102] Gondi, C. S.; Rao, J. S. Concepts in in vivo siRNA delivery for cancer therapy. Journal of cellular physiology 2009, 220, 285-291. Google Scholar

  • [103] Pille, J. Y.; Li, H.; Blot, E.; Bertrand, J. R.; Pritchard, L. L.; Opolon, P.; Maksimenko, A.; Lu, H.; Vannier, J. P.; Soria, J., et al. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Human gene therapy 2006, 17, 1019-1026. CrossrefGoogle Scholar

  • [104] Rychahou, P.; Haque, F.; Shu, Y.; Zaytseva, Y.; Weiss, H. L.; Lee, E. Y.; Mustain, W.; Valentino, J.; Guo, P.; Evers, B. M. Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS nano 2015, 9, 1108-1116. CrossrefGoogle Scholar

  • [105] Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008, 3, 703-717. CrossrefGoogle Scholar

  • [106] Stern, S. T.; Hall, J. B.; Yu, L. L.; Wood, L. J.; Paciotti, G. F.; Tamarkin, L.; Long, S. E.; McNeil, S. E. Translational considerations for cancer nanomedicine. Journal of controlled release : official journal of the Controlled Release Society 2010, 146, 164-174. Google Scholar

  • [107] Shu, Y.; Shu, D.; Haque, F.; Guo, P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nature protocols 2013, 8, 1635-1659. CrossrefGoogle Scholar

  • [108] Dobrovolskaia, M. A.; McNeil, S. E. Immunological properties of engineered nanomaterials. Nature nanotechnology 2007, 2, 469-478. CrossrefGoogle Scholar

  • [109] Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics 2006, 307, 93-102. Google Scholar

  • [110] Allen, T. M.; Hansen, C.; Martin, F.; Redemann, C.; Yau-Young, A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991, 1066, 29-36. Google Scholar

  • [111] Veronese, F. M.; Pasut, G. PEGylation, successful approach to drug delivery. Drug Discovery Today 2005, 10, 1451-1458. CrossrefGoogle Scholar

  • [112] Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews 2011, 63, 136-151. CrossrefGoogle Scholar

  • [113] Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced drug delivery reviews 2013, 65, 71-79. CrossrefGoogle Scholar

  • [114] Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews 2011, 63, 131-135. CrossrefGoogle Scholar

  • [115] Dohmen, C.; Frohlich, T.; Lachelt, U.; Rohl, I.; Vornlocher, H. P.; Hadwiger, P.; Wagner, E. Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing. Molecular therapy. Nucleic acids 2012, 1, e7. Google Scholar

  • [116] McNamara, J. O., 2nd; Andrechek, E. R.; Wang, Y.; Viles, K. D.; Rempel, R. E.; Gilboa, E.; Sullenger, B. A.; Giangrande, P. H. Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature biotechnology 2006, 24, 1005-1015. CrossrefGoogle Scholar

  • [117] Rockey, W. M.; Hernandez, F. J.; Huang, S. Y.; Cao, S.; Howell, C. A.; Thomas, G. S.; Liu, X. Y.; Lapteva, N.; Spencer, D. M.; McNamara, J. O., et al. Rational truncation of an RNA aptamer to prostate-specific membrane antigen using computational structural modeling. Nucleic acid therapeutics 2011, 21, 299-314. Google Scholar

  • [118] Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Targeting of drugs and nanoparticles to tumors. J Cell Biol 2010, 188, 759-768. Google Scholar

  • [119] Brannon-Peppas, L.; Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews 2004, 56, 1649-1659. CrossrefGoogle Scholar

  • [120] Shim, M. S.; Kwon, Y. J. Efficient and targeted delivery of siRNA in vivo. The FEBS journal 2010, 277, 4814-4827. Google Scholar

  • [121] Hobel, S.; Aigner, A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 2013, 5, 484-501. Google Scholar

  • [122] Dar, G. H.; Gopal, V.; Rao, N. M. Systemic delivery of stable siRNA-encapsulating lipid vesicles: optimization, biodistribution, and tumor suppression. Molecular pharmaceutics 2015, 12, 610-620. CrossrefGoogle Scholar

  • [123] Kim, T.; Afonin, K. A.; Viard, M.; Koyfman, A. Y.; Sparks, S.; Heldman, E.; Grinberg, S.; Linder, C.; Blumenthal, R. P.; Shapiro, B. A. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery. Molecular therapy. Nucleic acids 2013, 2, e80. Google Scholar

  • [124] Schlegel, A.; Largeau, C.; Bigey, P.; Bessodes, M.; Lebozec, K.; Scherman, D.; Escriou, V. Anionic polymers for decreased toxicity and enhanced in vivo delivery of siRNA complexed with cationic liposomes. Journal of controlled release : official journal of the Controlled Release Society 2011, 152, 393-401. Google Scholar

  • [125] Rudzinski, W. E.; Aminabhavi, T. M. Chitosan as a carrier for targeted delivery of small interfering RNA. International Journal of Pharmaceutics 2010, 399, 1-11. Google Scholar

  • [126] Tsutsumi, T.; Hirayama, F.; Uekama, K.; Arima, H. Evaluation of polyamidoamine dendrimer/alpha-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering RNA (siRNA). Journal of controlled release : official journal of the Controlled Release Society 2007, 119, 349-359. Google Scholar

  • [127] Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.; Breunig, M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano letters 2009, 9, 2059-2064. CrossrefGoogle Scholar

  • [128] Tanaka, T.; Mangala, L. S.; Vivas-Mejia, P. E.; Nieves-Alicea, R.; Mann, A. P.; Mora, E.; Han, H. D.; Shahzad, M. M.; Liu, X.; Bhavane, R., et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 2010, 70, 3687-3696. CrossrefGoogle Scholar

  • [129] Safari, D.; Marradi, M.; Chiodo, F.; Th Dekker, H. A.; Shan, Y.; Adamo, R.; Oscarson, S.; Rijkers, G. T.; Lahmann, M.; Kamerling, J. P., et al. Gold nanoparticles as carriers for a synthetic Streptococcus pneumoniae type 14 conjugate vaccine. Nanomedicine 2012, 7, 651-662. CrossrefGoogle Scholar

  • [130] Zorko, M.; Langel, U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Advanced drug delivery reviews 2005, 57, 529-545. CrossrefGoogle Scholar

  • [131] Semple, S. C.; Akinc, A.; Chen, J.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W.; Stebbing, D.; Crosley, E. J.; Yaworski, E., et al. Rational design of cationic lipids for siRNA delivery. Nature biotechnology 2010, 28, 172-176. CrossrefGoogle Scholar

  • [132] Fattal, E.; Couvreur, P.; Dubernet, C. „Smart“ delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Advanced drug delivery reviews 2004, 56, 931-946. CrossrefGoogle Scholar

  • [133] Hatakeyama, H.; Ito, E.; Akita, H.; Oishi, M.; Nagasaki, Y.; Futaki, S.; Harashima, H. A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. Journal of controlled release : official journal of the Controlled Release Society 2009, 139, 127-132. Google Scholar

  • [134] Kim, T. J.; Afonin, K. A.; Viard, M.; Koyfman, A. Y.; Sparks, S.; Heldman, E.; Grinberg, S., Linder, C.; Blumenthal, R. P.; Shapiro, B. A. In silico, in vitro and in vivo studies indicate the potential use of bolaamphiphiles for therapeutic siRNAs delivery. Molecular therapy 2013. Google Scholar

  • [135] Grinberg, S.; Kolot, V.; Linder, C.; Shaubi, E.; Kas‘yanov, V.; Deckelbaum, R. J.; Heldman, E. Synthesis of novel cationic bolaamphiphiles from vernonia oil and their aggregated structures. Chemistry and physics of lipids 2008, 153, 85-97. Google Scholar

  • [136] Grinberg, S.; Linder, C.; Heldman, E. Progress in lipid-based nanoparticles for cancer therapy. Critical reviews in oncogenesis 2014, 19, 247-260. CrossrefGoogle Scholar

  • [137] Grinberg, S.; Linder, C.; Kolot, V.; Waner, T.; Wiesman, Z.; Shaubi, E.; Heldman, E. Novel cationic amphiphilic derivatives from vernonia oil: synthesis and self-aggregation into bilayer vesicles, nanoparticles, and DNA complexants. Langmuir 2005, 21, 7638-7645. CrossrefGoogle Scholar

  • [138] Dakwar, G. R.; Abu Hammad, I.; Popov, M.; Linder, C.; Grinberg, S.; Heldman, E.; Stepensky, D. Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. Journal of controlled release : official journal of the Controlled Release Society 2012, 160, 315-321. Google Scholar

About the article


Received: 2015-04-06

Accepted: 2015-05-06

Published Online: 2015-07-27


Citation Information: DNA and RNA Nanotechnology, Volume 2, Issue 1, Pages 1–12, ISSN (Online) 2353-1770, DOI: https://doi.org/10.1515/rnan-2015-0001.

Export Citation

©2015 Bich Ngoc Dao, et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Martin Panigaj, M. Brittany Johnson, Weina Ke, Jessica McMillan, Ekaterina A. Goncharova, Morgan Chandler, and Kirill A. Afonin
ACS Nano, 2019
[2]
Ryan C. Oliver, Lewis A. Rolband, Alanna M. Hutchinson-Lundy, Kirill A. Afonin, and Joanna K. Krueger
Nanomaterials, 2019, Volume 9, Number 5, Page 681
[3]
Siddharth Agarwal and Elisa Franco
Journal of the American Chemical Society, 2019, Volume 141, Number 19, Page 7831
[4]
Enping Hong, Justin Halman, Ankit Shah, Edward Cedrone, Nguyen Truong, Kirill Afonin, and Marina Dobrovolskaia
Molecules, 2019, Volume 24, Number 6, Page 1094
[5]
Mohammad Amin Alibakhshi, Justin R. Halman, James Wilson, Aleksei Aksimentiev, Kirill A. Afonin, and Meni Wanunu
ACS Nano, 2017
[6]
Lorena Parlea, Anu Puri, Wojciech Kasprzak, Eckart Bindewald, Paul Zakrevsky, Emily Satterwhite, Kenya Joseph, Kirill A. Afonin, and Bruce A. Shapiro
ACS Combinatorial Science, 2016, Volume 18, Number 9, Page 527
[7]
Dominika Jedrzejczyk and Arkadiusz Chworos
DNA and RNA Nanotechnology, 2015, Volume 2, Number 1
[9]
Kirill A. Afonin, Mathias Viard, Philip Tedbury, Eckart Bindewald, Lorena Parlea, Marshall Howington, Melissa Valdman, Alizah Johns-Boehme, Cara Brainerd, Eric O. Freed, and Bruce A. Shapiro
Nano Letters, 2016, Volume 16, Number 3, Page 1746

Comments (0)

Please log in or register to comment.
Log in