Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA and RNA Nanotechnology

formerly RNA Nanotechnolgy

Emerging Science

Open Access
See all formats and pricing
More options …

Self-assembled DNA/RNA nanoparticles as a new generation of therapeutic nucleic acids: immunological compatibility and other translational considerations

Marina A. Dobrovolskaia
  • Corresponding author
  • Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-08 | DOI: https://doi.org/10.1515/rnan-2016-0001


Therapeutic nucleic acids (TNAs) are rapidly being embraced as effective interventions in a variety of genetic disorders, cancers, and viral/microbial infections, as well as for use in improving vaccine efficacy. Many traditional nucleotide-based formulations have been approved for clinical use, while various macromolecular nucleic acids are in different phases of preclinical and clinical development. Various nanotechnology carriers, including but not limited to liposomes, emulsions, dendrimers, and polyplexes, are considered for their improved delivery and reduced toxicity compared to traditional TNAs. Moreover, a new generation of TNAs has recently emerged and is represented by DNA/RNA nanoparticles formed by the self-assembly of DNA, RNA, or hybrid DNA-RNA oligonucleotides into 1D, 2D, and 3D structures of different shapes. In this mini-review, I will discuss immunocompatibility and other translational aspects in the development of this new class of promising nucleic acid therapeutics.

Keywords: nanoparticles; preclinical; immunotoxicity; cytokines; anaphylaxis; complement; therapeutic nucleic acids


  • [1] Afonin KA, Bindewald E, Kireeva M, Shapiro BA. Computational and experimental studies of reassociating RNA/DNA hybrids containing split functionalities. Methods Enzymol. 2015;553:313-34. Google Scholar

  • [2] Afonin KA, Bindewald E, Yaghoubian AJ, Voss N, Jacovetty E, Shapiro BA, et al. In vitro assembly of cubic RNA-based scaffolds designed in silico. Nat Nanotechnol. 2010 Sep;5(9):676-82. CrossrefGoogle Scholar

  • [3] Afonin KA, Cieply DJ, Leontis NB. Specific RNA self-assembly with minimal paranemic motifs. J Am Chem Soc. 2008 Jan 9;130(1):93-102. CrossrefGoogle Scholar

  • [4] Afonin KA, Desai R, Viard M, Kireeva ML, Bindewald E, Case CL, et al. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Res. 2014 Feb;42(3):2085-97. CrossrefGoogle Scholar

  • [5] Afonin KA, Grabow WW, Walker FM, Bindewald E, Dobrovolskaia MA, Shapiro BA, et al. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc. 2011 Dec;6(12):2022-34. CrossrefGoogle Scholar

  • [6] Afonin KA, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, et al. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res. 2014 Jun 17;47(6):1731-41. CrossrefGoogle Scholar

  • [7] Afonin KA, Viard M, Kagiampakis I, Case CL, Dobrovolskaia MA, Hofmann J, et al. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano. 2015 Jan 27;9(1):251-9. CrossrefGoogle Scholar

  • [8] Afonin KA, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, et al. Multifunctional RNA nanoparticles. Nano Lett. 2014 Oct 8;14(10):5662-71. CrossrefGoogle Scholar

  • [9] Binzel DW, Khisamutdinov EF, Guo P. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry. 2014 Apr 15;53(14):2221-31. Google Scholar

  • [10] Grabow WW, Zakrevsky P, Afonin KA, Chworos A, Shapiro BA, Jaeger L. Self-assembling RNA nanorings based on RNAI/II inverse kissing complexes. Nano Lett. 2011 Feb 9;11(2):878-87. CrossrefGoogle Scholar

  • [11] Jasinski DL, Khisamutdinov EF, Lyubchenko YL, Guo P. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS Nano. 2014 Aug 26;8(8):7620-9. CrossrefGoogle Scholar

  • [12] Li H, Rychahou PG, Cui Z, Pi F, Evers BM, Shu D, et al. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation. Nucleic Acid Ther. 2015 Aug;25(4):188-97. Google Scholar

  • [13] Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, et al. Building programmable jigsaw puzzles with RNA. Science. 2004 Dec 17;306(5704):2068-72. Google Scholar

  • [14] Severcan I, Geary C, Chworos A, Voss N, Jacovetty E, Jaeger L. A polyhedron made of tRNAs. Nat Chem. 2010 Sep;2(9):772-9. CrossrefGoogle Scholar

  • [15] Severcan I, Geary C, Verzemnieks E, Chworos A, Jaeger L. Square-shaped RNA particles from different RNA folds. Nano Lett. 2009 Mar;9(3):1270-7. CrossrefGoogle Scholar

  • [16] Nasalean L, Baudrey S, Leontis NB, Jaeger L. Controlling RNA self-assembly to form filaments. Nucleic Acids Res. 2006;34(5):1381-92. CrossrefGoogle Scholar

  • [17] Bindewald E, Hayes R, Yingling YG, Kasprzak W, Shapiro BA. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign. Nucleic Acids Res. 2008 Jan;36(Database issue):D392-7. CrossrefGoogle Scholar

  • [18] Shapiro BA, Bindewald E, Kasprzak W, Yingling Y. Protocols for the in silico design of RNA nanostructures. Methods Mol Biol. 2008;474:93-115. Google Scholar

  • [19] Yingling YG, Shapiro BA. Computational design of an RNA hexagonal nanoring and an RNA nanotube. Nano Lett. 2007 Aug;7(8):2328-34. CrossrefGoogle Scholar

  • [20] Shu Y, Haque F, Shu D, Li W, Zhu Z, Kotb M, et al. Fabrication of 14 different RNA nanoparticles for specific tumor targeting without accumulation in normal organs. RNA. 2013 Jun;19(6):767-77. CrossrefGoogle Scholar

  • [21] Shu D, Shu Y, Haque F, Abdelmawla S, Guo P. Thermodynamically stable RNA three-way junction for constructing multifunctional nanoparticles for delivery of therapeutics. Nat Nanotechnol. 2011 Oct;6(10):658-67. CrossrefGoogle Scholar

  • [22] Grabow WW, Jaeger L. RNA self-assembly and RNA nanotechnology. Acc Chem Res. 2014 Jun 17;47(6):1871-80. CrossrefGoogle Scholar

  • [23] Afonin KA, Viard M, Martins AN, Lockett SJ, Maciag AE, Freed EO, et al. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nat Nanotechnol. 2013 Apr;8(4):296-304. CrossrefGoogle Scholar

  • [24] Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, et al. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. Nano Today. 2015 Oct 1;10(5):631-55. CrossrefGoogle Scholar

  • [25] Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, et al. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev. 2014 Feb;66:74-89. CrossrefGoogle Scholar

  • [26] Shu Y, Shu D, Haque F, Guo P. Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc. 2013 Sep;8(9):1635-59. CrossrefGoogle Scholar

  • [27] Haque F, Shu D, Shu Y, Shlyakhtenko LS, Rychahou PG, Evers BM, et al. Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today. 2012 Aug;7(4):245-57. CrossrefGoogle Scholar

  • [28] Kornbrust D, Cavagnaro J, Levin A, Foy J, Pavco P, Gamba-Vitalo C, et al. Oligo safety working group exaggerated pharmacology subcommittee consensus document. Nucleic Acid Ther. 2013 Feb;23(1):21-8. Google Scholar

  • [29] Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine. 2013 Jan;9(1):1-14. Google Scholar

  • [30] Dobrovolskaia MA, McNeil SE. Immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Biol Ther. 2015 Jul;15(7):1023-48. CrossrefGoogle Scholar

  • [31] Henry SP, Geary RS, Yu R, Levin AA. Drug properties of second-generation antisense oligonucleotides: how do they measure up to their predecessors? Curr Opin Investig Drugs. 2001 Oct;2(10):1444-9. Google Scholar

  • [32] Levin AA. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim Biophys Acta. 1999 Dec 10;1489(1):69-84. Google Scholar

  • [33] Sharma VK, Watts JK. Oligonucleotide therapeutics: chemistry, delivery and clinical progress. Future Med Chem. 2015 Oct;7(16):2221-42. CrossrefGoogle Scholar

  • [34] Alvarez-Salas LM. Nucleic acids as therapeutic agents. Curr Top Med Chem. 2008;8(15):1379-404. CrossrefGoogle Scholar

  • [35] Henry SP, Monteith D, Bennett F, Levin AA. Toxicological and pharmacokinetic properties of chemically modified antisense oligonucleotide inhibitors of PKC-alpha and C-raf kinase. Anticancer Drug Des. 1997 Jul;12(5):409-20. Google Scholar

  • [36] Henry SP, Monteith D, Levin AA. Antisense oligonucleotide inhibitors for the treatment of cancer: 2. Toxicological properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des. 1997 Jul;12(5):395-408. Google Scholar

  • [37] Holmlund JT, Monia BP, Kwoh TJ, Dorr FA. Toward antisense oligonucleotide therapy for cancer: ISIS compounds in clinical development. Curr Opin Mol Ther. 1999 Jun;1(3):372-85. Google Scholar

  • [38] Monteith DK, Henry SP, Howard RB, Flournoy S, Levin AA, Bennett CF, et al. Immune stimulation--a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des. 1997 Jul;12(5):421-32. Google Scholar

  • [39] Schubert D, Levin AA, Kornbrust D, Berman CL, Cavagnaro J, Henry S, et al. The Oligonucleotide Safety Working Group (OSWG). Nucleic Acid Ther. 2012 Aug;22(4):211-2. Google Scholar

  • [40] Evans DC, Watt AP, Nicoll-Griffith DA, Baillie TA. Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol. 2004 Jan;17(1):3-16. CrossrefGoogle Scholar

  • [41] Coelho T, Adams D, Silva A, Lozeron P, Hawkins PN, Mant T, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013 Aug 29;369(9):819-29. Google Scholar

  • [42] Dobrovolskaia MA, McNeil SE. Strategy for selecting nanotechnology carriers to overcome immunological and hematological toxicities challenging clinical translation of nucleic acid-based therapeutics. Expert Opin Drug Deliv. 2015 Jul;12(7):1163-75. CrossrefGoogle Scholar

  • [43] Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013 Nov;12(11):967-77. CrossrefGoogle Scholar

  • [44] Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi Therapies: Drugging the Undruggable. Sci Transl Med. 2014 Jun 11;6(240):240ps7. Google Scholar

  • [45] Cossum PA, Sasmor H, Dellinger D, Truong L, Cummins L, Owens SR, et al. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther. 1993 Dec;267(3):1181-90. Google Scholar

  • [46] Cossum PA, Truong L, Owens SR, Markham PM, Shea JP, Crooke ST. Pharmacokinetics of a 14C-labeled phosphorothioate oligonucleotide, ISIS 2105, after intradermal administration to rats. J Pharmacol Exp Ther. 1994 Apr;269(1):89-94. Google Scholar

  • [47] Christensen J, Litherland K, Faller T, van de Kerkhof E, Natt F, Hunziker J, et al. Biodistribution and metabolism studies of lipid nanoparticle-formulated internally Google Scholar

  • [3H]-labeled siRNA in mice. Drug Metab Dispos. 2014 Mar;42(3):431-40. PubMedGoogle Scholar

  • [48] Christensen J, Litherland K, Faller T, van de Kerkhof E, Natt F, Hunziker J, et al. Metabolism studies of unformulated internally Google Scholar

  • [3H]-labeled short interfering RNAs in mice. Drug Metab Dispos. 2013 Jun;41(6):1211-9. PubMedGoogle Scholar

  • [49] Dar GH, Gopal V, Rao NM. Systemic delivery of stable siRNA-encapsulating lipid vesicles: optimization, biodistribution, and tumor suppression. Mol Pharm. 2015 Feb 2;12(2):610-20. CrossrefGoogle Scholar

  • [50] Elbakry A, Zaky A, Liebl R, Rachel R, Goepferich A, Breunig M. Layer-by-layer assembled gold nanoparticles for siRNA delivery. Nano Lett. 2009 May;9(5):2059-64. CrossrefGoogle Scholar

  • [51] Gupta K, Afonin KA, Viard M, Herrero V, Kasprzak W, Kagiampakis I, et al. Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications. J Control Release. 2015 Jul 4;213:142-51. Google Scholar

  • [52] Hobel S, Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Sep-Oct;5(5):484-501. Google Scholar

  • [53] Kim T, Afonin KA, Viard M, Koyfman AY, Sparks S, Heldman E, et al. In Silico, In Vitro, and In Vivo Studies Indicate the Potential Use of Bolaamphiphiles for Therapeutic siRNAs Delivery. Mol Ther Nucleic Acids. 2013;2:e80. Google Scholar

  • [54] Rudzinski WE, Aminabhavi TM. Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm. 2010 Oct 31;399(1-2):1-11. Google Scholar

  • [55] Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 2010 May 1;70(9):3687-96. CrossrefGoogle Scholar

  • [56] Tsutsumi T, Hirayama F, Uekama K, Arima H. Potential use of polyamidoamine dendrimer/alpha-cyclodextrin conjugate (generation 3, G3) as a novel carrier for short hairpin RNA-expressing plasmid DNA. J Pharm Sci. 2008 Aug;97(8):3022-34. CrossrefGoogle Scholar

  • [57] Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577-91. CrossrefGoogle Scholar

  • [58] Boraschi D, Costantino L, Italiani P. Interaction of nanoparticles with immunocompetent cells: nanosafety considerations. Nanomedicine (Lond). 2012 Jan;7(1):121-31. CrossrefGoogle Scholar

  • [59] Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials: an introduction. In: Dobrovolskaia MA, McNeil SE, editors. Handbook of immunological properties of engineered nanomaterials. Singapore: World Scientific publishing Co. Pte. Ltd.; 2013. p. 1-25. Google Scholar

  • [60] Pantic I. Nanoparticles and modulation of immune responses. Sci Prog. 2011;94(Pt 1):97-107. CrossrefGoogle Scholar

  • [61] Abrams MT, Koser ML, Seitzer J, Williams SC, DiPietro MA, Wang W, et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther. 2010 Jan;18(1):171-80. CrossrefGoogle Scholar

  • [62] Kim JY, Choung S, Lee EJ, Kim YJ, Choi YC. Immune activation by siRNA/liposome complexes in mice is sequence- independent: lack of a role for Toll-like receptor 3 signaling. Mol Cells. 2007 Oct 31;24(2):247-54. Google Scholar

  • [63] Li S, Wu SP, Whitmore M, Loeffert EJ, Wang L, Watkins SC, et al. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol. 1999 May;276(5 Pt 1):L796-804. Google Scholar

  • [64] Vasievich EA, Chen W, Huang L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. Cancer Immunol Immunother. 2011 May;60(5):629-38. CrossrefGoogle Scholar

  • [65] Sakurai H, Kawabata K, Sakurai F, Nakagawa S, Mizuguchi H. Innate immune response induced by gene delivery vectors. Int J Pharm. 2008 Apr 16;354(1-2):9-15. Google Scholar

  • [66] Feng L, Li SK, Liu H, Liu CY, LaSance K, Haque F, et al. Ocular delivery of pRNA nanoparticles: distribution and clearance after subconjunctival injection. Pharm Res. 2014 Apr;31(4):1046-58. CrossrefGoogle Scholar

  • [67] Guo P, Shu Y, Binzel D, Cinier M. Synthesis, conjugation, and labeling of multifunctional pRNA nanoparticles for specific delivery of siRNA, drugs, and other therapeutics to target cells. Methods Mol Biol. 2012;928:197-219. Google Scholar

  • [68] Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, Hall KT, et al. Computational and experimental characterization of RNA cubic nanoscaffolds. Methods. 2014 May 15;67(2):256-65. CrossrefGoogle Scholar

  • [69] Dao BN, Viard M, Martins AN, Kasprzak W, Shapiro BA, Afonin KA. Triggering RNAi with multifunctional RNA nanoparticles and their delivery. DNA and RNA Nanotechnology. 2015;2:1-12. CrossrefGoogle Scholar

  • [70] Zolnik BS, Stern ST, Kaiser JM, Heakal Y, Clogston JD, Kester M, et al. Rapid distribution of liposomal short-chain ceramide in vitro and in vivo. Drug Metab Dispos. 2008 Aug;36(8):1709-15. CrossrefGoogle Scholar

  • [71] Abdelmawla S, Guo S, Zhang L, Pulukuri SM, Patankar P, Conley P, et al. Pharmacological characterization of chemically synthesized monomeric phi29 pRNA nanoparticles for systemic delivery. Mol Ther. 2011 Jul;19(7):1312-22. CrossrefGoogle Scholar

  • [72] Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol. 2012 Jun;7(6):389-93. CrossrefGoogle Scholar

  • [73] Glover JM, Leeds JM, Mant TG, Amin D, Kisner DL, Zuckerman JE, et al. Phase I safety and pharmacokinetic profile of an intercellular adhesion molecule-1 antisense oligodeoxynucleotide (ISIS 2302). J Pharmacol Exp Ther. 1997 Sep;282(3):1173-80. Google Scholar

  • [74] Zhou J, Shu Y, Guo P, Smith DD, Rossi JJ. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods. 2011 Jun;54(2):284-94. Google Scholar

  • [75] Afonin KA, Kireeva M, Grabow WW, Kashlev M, Jaeger L, Shapiro BA. Co-transcriptional assembly of chemically modified RNA nanoparticles functionalized with siRNAs. Nano Lett. 2012 Oct 10;12(10):5192-5. CrossrefGoogle Scholar

  • [76] Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res. 2014 Sep;42(15):9996-10004. CrossrefGoogle Scholar

  • [77] Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release. 2015 Dec 28;220(Pt B):571-83. CrossrefGoogle Scholar

  • [78] Hawe A, Hulse WL, Jiskoot W, Forbes RT. Taylor dispersion analysis compared to dynamic light scattering for the size analysis of therapeutic peptides and proteins and their aggregates. Pharm Res. 2011 Sep;28(9):2302-10. CrossrefGoogle Scholar

About the article

Received: 2016-02-08

Accepted: 2016-03-18

Published Online: 2016-06-08

Citation Information: DNA and RNA Nanotechnology, Volume 3, Issue 1, ISSN (Online) 2353-1770, DOI: https://doi.org/10.1515/rnan-2016-0001.

Export Citation

© 2016 Marina A. Dobrovolskaia. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xuyu Tan, Hao Lu, Yehui Sun, Xiaoying Chen, Dali Wang, Fei Jia, and Ke Zhang
Chem, 2019, Volume 5, Number 6, Page 1584
Lauren Rackley, Jaimie Marie Stewart, Jacqueline Salotti, Andrey Krokhotin, Ankit Shah, Justin R. Halman, Ridhima Juneja, Jaclyn Smollett, Lauren Lee, Kyle Roark, Mathias Viard, Mubin Tarannum, Juan Vivero-Escoto, Peter F. Johnson, Marina A. Dobrovolskaia, Nikolay V. Dokholyan, Elisa Franco, and Kirill A. Afonin
Advanced Functional Materials, 2018, Page 1805959
Enping Hong, Justin R. Halman, Ankit B. Shah, Emil F. Khisamutdinov, Marina A. Dobrovolskaia, and Kirill A. Afonin
Nano Letters, 2018
Morgan Brittany Johnson, Justin R. Halman, Emily Satterwhite, Alexey V. Zakharov, My N. Bui, Kheiria Benkato, Victoria Goldsworthy, Taejin Kim, Enping Hong, Marina A. Dobrovolskaia, Emil F. Khisamutdinov, Ian Marriott, and Kirill A. Afonin
Small, 2017, Page 1701255

Comments (0)

Please log in or register to comment.
Log in