Jump to ContentJump to Main Navigation
Show Summary Details
More options …

DNA and RNA Nanotechnology

formerly RNA Nanotechnolgy

Emerging Science

Open Access
See all formats and pricing
More options …

Non-viral Vector Mediated RNA Interference Technology for Central Nervous System Injury

Christian Macks
  • Corresponding author
  • Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634-0905
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jeoung Soo Lee
  • Corresponding author
  • Drug Design, Development, and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634-0905
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-08-25 | DOI: https://doi.org/10.1515/rnan-2016-0003


Neuronal axons damaged by traumatic injury are unable to spontaneously regenerate in the mammalian adult central nervous system (CNS), causing permanent motor, sensory, and cognitive deficits. Regenerative failure in the adult CNS results from a complex pathology presenting multiple barriers, both the presence of growth inhibitors in the extrinsic microenvironment and intrinsic deficiencies in neuronal biochemistry, to axonal regeneration and functional recovery. There are many strategies for axonal regeneration after CNS injury including antagonism of growth-inhibitory molecules and their receptors, manipulation of cyclic nucleotide levels, and delivery of growth-promoting stimuli through cell transplantation and neurotrophic factor delivery. While all of these approaches have achieved varying degrees of improvement in plasticity, regeneration, and function, there is no clinically effective therapy for CNS injury. RNA interference technology offers strategies for improving regeneration by overcoming the aspects of the injured CNS environment that inhibit neurite growth. This occurs through the knockdown of growth-inhibitory molecules and their receptors. In this review, we discuss the current state of RNAi strategies for the treatment of CNS injury based on non-viral vector mediated delivery.

Keywords: RNAi; CNS injury; miRNA; siRNA; shRNA; nonviral vector


  • [1] Domingo, A., Al-Yahya, A., Asiri, Y., Eng, J., Lam, T., Spinal Cord Injury Rehabilitation Evidence Research Team. A Systemic Review of the Effects of Pharmacological Agents on Walking Function in People with Spinal Cord Injury. Journal of Neurotrauma. 2012, 29, 865-879. Google Scholar

  • [2] Kelso, M.L., Pauly. J,R,. Therapeutic Targets for Neuroprotection and/or Enhancement of Functional Recovery Following Traumatic Brain Injury. Progress in Molecular Biology and Translational Science. 2011, 98, 85-131. Google Scholar

  • [3] Ghajar, J. Traumatic brain injury. Lancet. 2000, 356, 923-929. Google Scholar

  • [4] Chelluboina, B., Warhekar, A., Dillard, M., Klopfenstein, J.D., Pinson, D.M., Wang, D.Z., Veeravalli, K.K. Post-transcriptional inactivation of matrix metalloproteinase-12 after focal cerebral ischemia attenuates brain damage. Scientific Reports. 2014, 5,1-11. Google Scholar

  • [5] Querbes, W., Ge, P., Zhang, W., Fan, Y., Costigan, J., Charisse, K., Maier, M., Nechev, L., Manoharan, Kotelianski, V., Sah, D. Direct CNS Delivery of siRNA Mediates Robust Silencing in Oligodendrocytes. Oligonucleotides. 2008, XX, 1-8. Google Scholar

  • [6] Mehta, N.R., Nguyen, T., Bullen, J.W., Griffin, J.W., Schnaar, R.L. Myelin-associated glycoprotein (MAG) protects neurons form acute toxicity using a ganglioside-dependent mechanism. ACS Chem Neurosci. 2010, 1(3), 215-222. CrossrefGoogle Scholar

  • [7] McKeon, R.J., Jurynec, M.J., Buck, C.R. The chondroitin sulfate proteo glycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 1999, 19, 10778-10788. Google Scholar

  • [8] Koprivica, V., Cho, K.S., Park, J.B., Yiu, G., Atwal, J., Gore, B., Kim, J.A., Lin, E., Tessier-Lavigne, M., Chen, D.F., He, Z. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science. 2005, 310, 106-110. Google Scholar

  • [9] Scnell, L., Schwab, M.E. Axon regeneration in rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990, 343, 269-272. Google Scholar

  • [10] GrandPre, T., Li, S., Strittmatter, S.M. Nogo-66 receptor agonist peptide promotes axonal regeration. Nature. 2002, 417, 547-551. Google Scholar

  • [11] Fournier, A.E., Gould, G.C., Liu, B.P., Strittmatter, S.M. Truncated soluble Nogo binds Nogo-66 and blocks inhibition of axon growth by myelin. J. Neurosci. 2002, 22, 8876-8883. Google Scholar

  • [12] Kim, I-D., Shin, J-H., Kim, S-W., Choi, S., Ahn, J., Han, P-L., Park, J-S., Lee, J-K. Intranasal Delivery of HMGB1 siRNA Confers Target Gene Knockdown and Robust Neuroprotection in the Postischemic Brain. Molecular Therapy. 2012, 20(4), 829-839. Google Scholar

  • [13] Andor, T., Sato, S., Toyooka, T., Kobayashi, H., Nawashiro, H., Ashida, H., Obara, M. Photochemical Wave-Driven Delivery of siRNAs Targeting Intermediate Filament Proteins Promotes Functional Recovery after Spinal Cord Injury in Rats. PLOS ONE. 2012, 7(12), 1-11. Google Scholar

  • [14] Zukor, K., Belin, S., Weng, C., Keelan, N., Wang, X., He, Z.. Short Hairpin RNA against PTEN Enhances Regenerative Growth of Corticospinal Tract Axons after Spinal Cord Injury. J. Neurosci. 2013, 33(39), 15350-15361. CrossrefGoogle Scholar

  • [15] Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditic elegans. Nature. 1998, 391(19), 806-810. Google Scholar

  • [16] Afonin, K., Grabow, W.W., Walker, F.M., Bindewald, E., Dobrovolskaia, M.A., Shapiro, B.A., Jaeger, L. Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nature Proc. 2011, 6, 2022-2034. CrossrefGoogle Scholar

  • [17] Shu, Y., Cinier, M., Shu, D., Guo, P. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods. 2011, 54:201-214. Google Scholar

  • [18] Gherardini, L., Bardi, G., Gennaro, M., Pizzorusso, T. Novel siRNA delivery strategy: a new “strand” in CNS translational medicine?. Cell. Mol. Life Sci. 2014, 71:1-20. CrossrefGoogle Scholar

  • [19] Li, C., Parker, A., Menocal, E., Xiang ,S., Borodyansky, L., Fruehauf, J.H. Delivery of RNA Interference. Cell Cycle. 2006, 5(18), 2103-2109. CrossrefGoogle Scholar

  • [20] Lee, R.C., Feinbaum, R.L., Ambros, V. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14. Cell. 1993, 75, 843-854. CrossrefGoogle Scholar

  • [21] Salta, E., Strooper, B.D. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol. 2012, 11: 189-200. CrossrefGoogle Scholar

  • [22] Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., Kim, V.N. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003, 425, 415-419. Google Scholar

  • [23] Han, J., Lee, Y., Yeom, K-H., Kim, K-H., Jin, H., Kim, V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development. 2004, 18: 3016-3027. CrossrefGoogle Scholar

  • [24] Zhang, X., Zeng, Y. The terminal loop region controls microRNA processing by Drosha and Dicer. Nucleic Acids Research. 2010, 38(21), 7689-7697. CrossrefGoogle Scholar

  • [25] Lim, L., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., Johnson, J.M. Microarray analysis shows that some miRNAs downregulate large number of target mRNAs. Nature. 2005, 433, 769-773. Google Scholar

  • [26] McBride, J.L., Boudreau, R.L., Harper, S.Q., Staber, P.D., Monteys, A.M., Martins, I., Gilmoer, B.L., Burstein, H., Peluso, R.W., Polisky, B., Carter, B.J., Davidson, B.L.. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: Implications for the therapeutic development of RNAi. PNAS. 2008, 105(15), 5868-5873. CrossrefGoogle Scholar

  • [27] Höbel, S., Aigner, A. Polyethylenimines for siRNA and miRNA delivery in vivo. WIREs Nanomed Nanobiotechnol. 2013, 5, 484-501. Google Scholar

  • [28] Lei, C., Cui, Y., Zheng, L., Chow, P.K., Wang, C.H. Development of a gene/drug dual delivery system for brain tumor therapy: Potent inhibition via RNA interference and synergistic effects. Biomaterials. 2013, 34, 7483-7494. CrossrefGoogle Scholar

  • [29] Tiwari, B., Amiji, M. A review of nanocarrier-based CNS delivery systems. Current Drug Delivery. 2006, 3, 219-232. CrossrefGoogle Scholar

  • [30] Wekerle, H. Immune Protection of the Brain – Efficient and Delicate. The Journal of Infectious Disease. 2002,186(Suppl2), S140-S144. Google Scholar

  • [31] Kanazawa, T., Akiyama, F., Kakizaki, Y., Seta, Y. Delivery of siRNA to the brain using a combination of nose-to-brain delivery and cell-penetrating peptide-modified nano-micelles. Biomaterials. 2013, 34, 9220-9226. CrossrefGoogle Scholar

  • [32] Yeh, W-L., Lu, D-Y., Lin, C-J., Liou, H-C., Fu, W-M. Inhibition of Hypoxia-Induced Increase of Blood-Brain Barrier Permeability by YC-1 through the Antagonism of Google Scholar

  • [HIF-1α Accumulation and VEGF Expression. Molecular Pharmacology. 2007, 72(2), 440-449. Google Scholar

  • [33] Kreuter, J. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews. 2001, 47, 65-91. CrossrefGoogle Scholar

  • [34] Zhou, J., Shum, K.T., Burnett, J.C., Rossi, J.J. Nanoparticle- Based Delivery of RNAi Therapeutics: Progress and Challenges. Pharmaceuticals. 2013, 6, 85-107. CrossrefGoogle Scholar

  • [35] Hassini, Z., Lemkine, G.F., Erbacher, P., Palmier, K., Alfama, G., Giovannangeli, C, Behr, J-P., Demeneix, BA . Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels. J Gene Med. 2005, 7, 198-207. CrossrefGoogle Scholar

  • [36] Bruun, Larsen, T.B., Jølck, R.I., Eliasen, R., Holm, R., Gjetting, T., Andersen, T.L. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. International Journal of Nanomedicine. 2015, 10, 5995-6008. Google Scholar

  • [37] Cardoso Simões, S., de Almeida, L.P., Plesnila, N., Pedroso de Lima, M.C., Wagner, E., Culmsee, C. Tf-lipoplexes for neuronal siRNA delivery: A promising system to mediate gene silencing in the CNS. Journal of Controlled Release. 2008, 132, 113-123. Google Scholar

  • [38] Park, I-K., Lasiene, J., Chou, S-H., Horner, P.J., Pun, S.H. Neuronspecific delivery of nucleic acids mediated by Tet1-modified poly(ethylenimine). J Gene Med. 2007, 9, 691-702. CrossrefGoogle Scholar

  • [39] Miura, Y., Takenaka, T., Toh, K., Wu, S., Nishihara, H., Kano, M.R., Ino, Y., Nomoto, T., Matsumoto, Y., Koyama, H., Cabral, H., Nishiyama, N., Kataoka, K. Cyclic RGD-Linked Polymeric Micelles for Targeted Delivery of Platinum Anticancer Drugs to Glioblastoma through the Blood-Brain Tumor Barrier. ACS Nano. 2013, 7(10), 8583-8592. CrossrefGoogle Scholar

  • [40] Tosi, G., Musumeci, T., Ruozi, B., Carbone, C., Belletti, D., Pignatello, R., Vandelli, M.A., Puglisi, G. The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: Strategies and mechanism of blood-brain barrier crossing and trafficking into the central nervous system. Journal of Drug Delivery Science and Technology. 2016, 32, 66-76. CrossrefGoogle Scholar

  • [41] Girao da Cruz, M.T., Simões, S., Pedroso de Lima, M.C. Improving lipoplex-meidated gene transfer into C6 glioma cells and primary neurons. Experimental Neurology. 2004, 187, 65-75. Google Scholar

  • [42] Cheng, X., Lee, R. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Advanced Drug Delivery Reviews. 2016, 99, 129-137. Google Scholar

  • [43] Baysal, Ucar, G., Gultekinoglu, M., Ulubayram, K., Yabanoglu- Ciftci, S. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J Neural Transm. (2016), DOI: 10.1007/s00702-016-1527-4. CrossrefGoogle Scholar

  • [44] Nakajima, H., Kubo, T., Semi, Y., Itakura, M., Kuwamura, M., Izawa, T., Azuma, Y.T., Takeuchi, T. A rapid, targeted, neuron-selective, in vivo knockdown following a single intracerebroventricular injection of a novel chemically modified siRNA in the adult rat brain. Journal of Biotechnology. 2012, 157, 326-333. Google Scholar

  • [45] Shim, M.S., Kwon, Y.J. Efficient and targeted delivery of siRNA in vivo. FEBS Journal. 2010, 227, 4814-4827. Google Scholar

  • [46] Gupta, K., Afonin, K.A., Viard, M., Herrero, V., Kasprzak, W-C., Kagiampakis, I., Kim, T., Koyfman, A.Y., Puri, A., Stepler, M., Sappe, A., KewalRamani, V.N., Grinberg, S., Linder, C., Heldman, E., Blumenthal, R., Shapiro, BL. Bolaamphiphiles as Carriers for siRNA Delivery: From Syntheses to Practical Application. Journal of Controlled Release. 2015, 213, 143-151. Google Scholar

  • [47] Afonin, K., Viard, M., Martins, A.N., Lockett, S.J., Maciag, A.E., Freed, E.O., Heldman, E., Jaeger, L., Bluthmenthal, R., Shapiro, B.A. Activation of different split functionalities on re-association of RNA-DNA hybrids. Nature Nanotechnology. 2013, 44, 1-8. Google Scholar

  • [48] Krichevsky, A.M., Kosik, K.S. RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci USA. 2002, 99, 11926–11929. CrossrefGoogle Scholar

  • [49] Lingor, P., Michel, U., Shöll, U., Bähr, M., Kügler, S. Transfection of ‘‘naked’’ siRNA results in endosomal uptake and metabolic impairment in cultured neurons. Biochem Biophys Res Commun. 2004, 315, 1126–1133. Google Scholar

  • [50] Andaloussi, S., Lakhal, S., Mäger, I., Wood, M.J. Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews. 2013, 65: 391-397. CrossrefGoogle Scholar

  • [51] Alvarez-Erviti, L., Seow , Y., Yin, H., Betts, C., Lakhal, S., Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology.2011, 29(4), 241-247. Google Scholar

  • [52] Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J.J., Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654-659. CrossrefGoogle Scholar

  • [53] Skog, J., Wurdinger, T., van Rjin, S., Meijer, D., Gainche, Sena-Esteves, M., Curry, W.T., Carter, R.S., Krichevsky, A.M., Breakefield, X.O. Glioblastoma microvescicles transport RNA and proteins that promote tumor growth and provide diagnostic biomarkers. Nat. Cell Bio. 2008, 10, 1470-1476. CrossrefGoogle Scholar

  • [54] Godinho, B., McCarthy, D.J., Torres-Fuentes, C., Beltrán, C.J., McCarthy, J., Ogier, J.R., Darcy, R., O’Driscoll, C.M., Cryan, J.E.. Differential nanotoxicological and neuroinflammatory liabilities of non-viral vectors for RNA interference in the central nervous system. Biomaterials. 2014, 35, 489-499. CrossrefGoogle Scholar

  • [55] Perez, A.P., Mudiña-Weilenmann, C., Romero, E.L., Morilla, M.J.l. Increased brain radioactivity by intranasal 32P-labeled siRNA dendriplexes within in situ-forming mucoadhesive gels. International Journal of Nanomedicine. 2012, 7, 1373-1385. Google Scholar

  • [56] O’Mahony, A.M., Godinho, M., Cryan, J.F., O’Driscoll, C.M. Non-Viral Nanosystems for Gene and Small Interfering RNA Delivery to the Central Nervous System: Formulating the Solution. Journal of Pharmaceutical Sciences. 2013, 1-16. Google Scholar

  • [57] Guo, P., Coban, O., Snead, N.M.,Trebley, J., Hoeprich, S., Guo, S., Shu, Y. Engineering RNA for Targeted siRNA Delivery and Medical Application. Adv. Drug Deliv. Rev. 2011, 62, 650-666. Google Scholar

  • [58] Guo, P. RNA Nanotechnology: Engineering, Assembly and Applications in Detection, Gene Delivery and Therapy. J. Nanosci. Nanotechnol. 2005, 5(12), 1964-1982. Google Scholar

  • [59] Jain, K.K. The role of nanobiotechnology in drug delivery. Drug Discov. Today. 2005, 10(21), 1435-1442. CrossrefGoogle Scholar

  • [60] Li, W.,Szoka, F.C. Lipid-based Nanoparticles for Nucleic Acid Delivery. Pharm. Res. 2007, 24(3),438-449. CrossrefGoogle Scholar

  • [61] Abdelmawla, S., Guo, S., Zhang, L., Pulukuri, S.M., Patankar, P., Conley, P., Trebley, J., Guo, P., Li, Q-X. Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery. Molecular Therapy. 2011, 19(7), 1312-1322. CrossrefGoogle Scholar

  • [62] Abdallah, B., Hassan, A., Benoist, C., Goula, D., Behr, J.P., Demeneix, B.A. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain. Hum Gene Ther. 1996, 7, 1947-1954. CrossrefGoogle Scholar

  • [63] Boussif, O., Lezoualc’h, F., Zanta, M.A., Mergny, M.D., Scherman, D., Demeneix, B., Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A. 1995, 92, 7297-7301. CrossrefGoogle Scholar

  • [64] Lemkine, G.F., Mantero, S., Migné, C., Raji, A., Goula, D., Normandie, P., Levi, G., Demeneix, B.A. Preferential transfection of adult mouse neural stem cells and their immediate progeny in vivo with polyethylenimine. Mol Cell Neurosci. 2002, 19,165-174. CrossrefGoogle Scholar

  • [65] Fougerolles, A., Vornlocher, H-P., Maraganore, J., Lieberman, J. Interfering with disease: a progress report on siRNA-based therapeutics. Nature Reviews. 2007,6, 443-453. Google Scholar

  • [66] Gwak, S-J., Nice, J., Zhang, J., Green, B., Macks, C., Bae, S., Webb, K., Lee, J.S. Cationic, amphiphilic nopolymer micelles as nucleic acid carriers for enhanced transfection in rat spinal cord. Acta Biomaterialia. 2016, 35, 98-108. CrossrefGoogle Scholar

  • [67] O’Mahony, A., Ogier, J., Darcy, R., Cryan, J.F., O’Driscoll, C.M. Cationic and PEGylated Amphiphilic Cyclodextrins: Co-Formulation Opportunities for Neuronal Sirna Delivery. PLOS ONE. 2013, 8(6), 1-9. Google Scholar

  • [68] Oritz Mellet, O., Garcia Fernández, J.M., Benito, J.M. Cyclodextrin-based gene delivery systems. Chem Soc Rev. 2011, 40, 1586-1608. CrossrefGoogle Scholar

  • [69] Mendez-Ardoy, A., Urbiola, K., Aranda, C., Oritz-Mellet, C., Garcia Fernández, J.M., de Ilarduya, C.T. Polycationic amphiphilic cyclodextrin-based nanoparticles for therapeutic gene delivery. Nanomedicine. 2011, 6, 1697-1707. CrossrefGoogle Scholar

  • [70] Kostarelos, K., Miller, A.D. Synthetic, self-assembly ABCD nanoparticles; a structural paradigm for viable synthetic non-viral vectors. Chem Soc Rev. 2005, 34, 970-994. CrossrefGoogle Scholar

  • [71] Kim, I-D., Lim, C.M., Kim, J.B., Nam, H.Y., Nam, K., Kim, S.W., Park, J.S., Lee, J.K. Neuroprotection by biodegradable PAMAM ester (e-PAMAM-R)- mediated HMGB1 siRNA delivery in primary cortical culture and in the postischemic brain. Journal of Controlled Release. 2010, 142, 422-430. Google Scholar

  • [72] Fukuda, A.M., Adami, A., Pop, V., Bellone, J.A., Coats, J.S., Hartman, R.E., Ashwal, S., Obenaus, A., Badaut, J. Posttraumatic reduction of edema with aquaporin-4 RNA interference improves acute and chronic functional recovery. Journal of Cerebral Blood Flow & Metabolism. 2013, 33, 1621-1632. Google Scholar

  • [73] Ramachandran, P.S., et al. Recent Advances in RNA Interference Therapeutics for CNS Diseases. Neurotherapeutics. 2013, 10, 473-485. CrossrefGoogle Scholar

  • [74] Paddison, P.J., Caudy, A.A., Berstein, E., Hannon, G.J., Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development. 2002, 16, 948-958. CrossrefGoogle Scholar

  • [75] Xia, H., Mao, Q., Eliason, S.L., Harper, I.H., Orr, H.T., Paulson, H.L., Kotin, R.M., Davidson, B.L. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebral ataxia. Nature Medicine. 2004, 10(8), 816-820. CrossrefGoogle Scholar

  • [76] Zeitelhofer, M., Vessey, J.P., Yunli, X., Tübing, F., Thomas, S., Kiebler, M., Dahm, R. High-Efficiency Transfection of Short Hairpin RNAs-Encoding Plasmids Into Primary Hippocampal Neurons. Journal of Neuroscience Research. 2009, 87, 289-300. Google Scholar

About the article

Received: 2016-05-12

Accepted: 2016-06-22

Published Online: 2016-08-25

Citation Information: DNA and RNA Nanotechnology, Volume 3, Issue 1, ISSN (Online) 2353-1770, DOI: https://doi.org/10.1515/rnan-2016-0003.

Export Citation

© 2016 Christian Macks, Jeoung Soo Lee. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dominika Jedrzejczyk, Edyta Gendaszewska-Darmach, Roza Pawlowska, and Arkadiusz Chworos
Journal of Physics: Condensed Matter, 2017, Volume 29, Number 12, Page 123001

Comments (0)

Please log in or register to comment.
Log in