Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Review of Marketing Science


CiteScore 2018: 0.12

SCImago Journal Rank (SJR) 2018: 0.114
Source Normalized Impact per Paper (SNIP) 2018: 0.070

Online
ISSN
1546-5616
See all formats and pricing
More options …

A Monte Carlo Study of Design Procedures for the Semi-parametric Mixed Logit Model

Andreas Falke / Harald Hruschka
Published Online: 2016-04-30 | DOI: https://doi.org/10.1515/roms-2014-0002

Abstract

We determine efficient designs for choice-based conjoint analysis for the semi-parametric mixed logit model which captures latent consumer heterogeneity in a very flexible way. Different methods constructing one or multiple designs are tested. Additionally we apply Halton draws and determine a minimum potential design for prior draws to reduce computation times caused by accounting for latent heterogeneity of consumers. As main efficiency criteria for the construction of designs we consider measures related to D-error and entropy. As additional benchmarks we generate designs both randomly and by an approach which starts from orthogonal designs developed for linear models. We compare these alternative design procedures by simulating choices for different constellations on the basis of the semi-parametric mixed logit model. Using these simulated choices we estimate parameters of the semi-parametric mixed logit model in the next step. ANOVA with root mean squared error between estimated and true coefficient values as dependent variable shows that performance of design procedures depends on dissimilarity and segment size. Following a mean-standard deviation approach we determine which procedure should be used under different constellations or lack of prior information. Overall, either constructing ten designs based on DB-error or constructing one design based on entropy turn out to be preferable.

Keywords: semi-parametric semi-Bayesian mixed logit design; heterogeneity; estimation accuracy; multinomial logit design; D-optimality; entropy

References

  • Andrews, R. L., A. Ansari, and I. S. Currim. 2002. “Hierarchical Bayes Versus Finite Mixture Conjoint Analysis Models: A Comparison of Fit, Prediction and Partworth Recovery.” Journal of Marketing Research 39:87–98.Google Scholar

  • Baier, T., and E. Neuwirth. 2007. “Excel :: COM :: R.” Computational Statistics 22:91–108.CrossrefWeb of ScienceGoogle Scholar

  • Bernardo, J. M., and A. F. M. Smith. 2000. Bayesian Theory. Hoboken, NJ, USA: John Wiley & Sons, Inc.Google Scholar

  • Bhat, C. R. 2001. “Quasi-Random Maximum Simulated Likelihood Estimation of the Mixed Multinomial Logit Model.” Transportation Research Part B 35:677–93.CrossrefGoogle Scholar

  • Dzyabura, D., and J. R. Hauser. 2011. “Active Machine Learning for Consideration Heuristics.” Marketing Science 30:801–19.CrossrefGoogle Scholar

  • Evgeniou, T., M. Pontil, and O. Toubia. 2007. “A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation.” Marketing Science 26:805–18.CrossrefGoogle Scholar

  • Furrer, R., D. Nychka, and S. Sain. 2012. “Fields: Tools for Spatial Data. R package version 6.6.3.”, http://CRAN.R-project.org/package=fields.

  • Greene, W. H.. 1997. Economic Analysis. Upper Saddle River, NJ: Prentice Hall.Google Scholar

  • Gustafsson, A., A. Herrmann, and F. Huber. 2006. “Conjoint Analysis as an Instrument of Market Research Practice.” In Conjoint Measurement: Methods and Applications, edited by A. Gustafsson, A. Herrmann, 3–30. 4th ed., Berlin Heidelberg: Springer-Verlag.Google Scholar

  • Kessels, R., Goos, P., and Vandebroek, M.. 2006. “A Comparison of Criteria to Design Efficiency Choice Experiments.” Journal of Marketing Research 43:409–19.CrossrefGoogle Scholar

  • Kessels, R., B. Jones, and P. Goos. 2009. “An Efficient Algorithm for Constructing Bayesian Optimal Choice Designs.” Journal of Business & Economic Statistics 27:279–91.CrossrefGoogle Scholar

  • McFadden, D., and K. E. Train. 2000. “Mixed MNL Models for Discrete Response.” Journal of Applied Economics 15:447–70.CrossrefGoogle Scholar

  • Meyer, J.. 1987. “Two-Moment Decision Models and Expected Utility Maximization.” American Economic Review 77:421–30.Google Scholar

  • Sándor, Z., and M. Wedel. 2001. “Designing Conjoint Choice Experiments Using Managers’ Prior Beliefs.” Journal of Marketing Research 38:430–44.CrossrefGoogle Scholar

  • Sándor, Z., and M. Wedel. 2002. “Profile Construction in Experimental Choice Designs for Mixed Logit Models.” Marketing Science 21:455–75.CrossrefGoogle Scholar

  • Sándor, Z., and M. Wedel. 2005. “Heterogeneous Conjoint Choice Design.” Journal of Marketing Research 42:210–18.CrossrefGoogle Scholar

  • Settles, B. 2011. “From Theories to Queries: Active Learning in Practice.” JMLR: Workshop and Conference Proceedings 16:1–18.

  • Shannon, C. E. 1948. “A Mathematical Theory of Communication.” The Bell System Technical Journal 27:379–423 and 27:623–56.Google Scholar

  • Street, D. J., L. Burgess, and J. J. Louviere. 2005. “Quick and Easy Choice Sets: Constructing Optimal and Nearly Optimal Stated Choice Experiments.” International Journal of Research in Marketing 22:459–70.CrossrefGoogle Scholar

  • Toubia, O., J. R. Hauser, and D. I. Simester. 2004. “Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis.” Journal of Marketing Research 41:116–31.CrossrefGoogle Scholar

  • Train, K. E. 2000. Halton Sequences for Mixed Logit Economics Working Papers, E00-278, University of California at Berkeley.

  • Train, K. E. 2003. Discrete Choice Methods with Simulation. New York: Cambridge University Press.Google Scholar

  • Train, K. E. 2008. “EM Algorithms for Nonparametric Estimation of Mixing Distributions.” Journal of Choice Modeling 1:40–69.Google Scholar

  • Vriens, M., M. Wedel, and T. Wilms. 1996. “Metric Conjoint Segmentation Methods: A Monte Carlo Comparison.” Journal of Marketing Research 33:73–85.CrossrefGoogle Scholar

  • Yu, J., P. Goos, and M. Vandebroek. 2009. “Efficient Conjoint Choice Designs in the Presence of Respondent Heterogeneity.” Marketing Science 28:122–35.CrossrefGoogle Scholar

About the article

Published Online: 2016-04-30

Published in Print: 2016-06-01


Citation Information: Review of Marketing Science, Volume 14, Issue 1, Pages 21–67, ISSN (Online) 1546-5616, ISSN (Print) 2194-5985, DOI: https://doi.org/10.1515/roms-2014-0002.

Export Citation

©2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in