Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Random Operators and Stochastic Equations

Editor-in-Chief: Girko, Vyacheslav

Managing Editor: Molchanov, S.

Editorial Board: Accardi, L. / Albeverio, Sergio / Carmona, R. / Casati, G. / Christopeit, N. / Domanski, C. / Drygas, Hilmar / Gupta, A.K. / Ibragimov, I. / Kirsch, Werner / Klein, A. / Kondratyev, Yuri / Kurotschka, V. / Leonenko, N. / Loubaton, Philippe / Orsingher, E. / Pastur, L. / Rodrigues, Waldyr A. / Shiryaev, Albert / Turbin, A.F. / Veretennikov, Alexandre

CiteScore 2017: 0.32

SCImago Journal Rank (SJR) 2017: 0.177
Source Normalized Impact per Paper (SNIP) 2017: 0.592

Mathematical Citation Quotient (MCQ) 2017: 0.12

See all formats and pricing
More options …
Volume 26, Issue 1


Detecting changes in linear regression models with skew normal errors

Khamis K. Said / Wei Ning
  • Corresponding author
  • Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yubin Tian
Published Online: 2018-01-23 | DOI: https://doi.org/10.1515/rose-2018-0001


In this article, we discuss a linear regression change-point model with skew normal errors. We propose a testing procedure, based on a modified version of the Schwarz information criterion, which is named the modified information criterion (MIC) to locate change points in such a linear regression model. Due to the difficulty of derivation of the asymptotic null distribution of the associated test statistic analytically, the empirical critical values at different significance levels are approximated through simulations. Simulations have also been conducted under different changes among parameters of interest with various sample sizes to investigate the performance of the proposed test. Such a procedure has been applied on a NASA data to illustrate the detecting process.

Keywords: Change point detection; skew normal distribution; Schwarz information criterion; linear regression model

MSC 2010: 62F03; 62J05


  • [1]

    A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), no. 2, 171–178. Google Scholar

  • [2]

    A. Azzalini, The Skew-Normal and Related Families, Inst. Math. Stat. Monogr. 3, Cambridge University Press, Cambridge, 2014. Google Scholar

  • [3]

    A. Azzalini, SN: The skew-normal and related distributions such as the Skew-t. R package version: 1.5-1, 2017, http://azzalini.stat.unipd.it/SN.

  • [4]

    A. Azzalini and A. Capitanio, Statistical applications of the multivariate skew normal distribution, J. R. Stat. Soc. Ser. B Stat. Methodol. 61 (1999), no. 3, 579–602. CrossrefGoogle Scholar

  • [5]

    R. L. Brown, J. Durbin and J. M. Evans, Techniques for testing the constancy of regression relationships over time, J. Roy. Statist. Soc. Ser. B 37 (1975), 149–192. Google Scholar

  • [6]

    X. Cai, K. K. Said and W. Ning, Change-point analysis with bathtub shape for the exponential distribution, J. Appl. Stat. 43 (2016), no. 15, 2740–2750. Web of ScienceCrossrefGoogle Scholar

  • [7]

    J. Chen, Testing for a change point in linear regression models, Comm. Statist. Theory Methods 27 (1998), no. 10, 2481–2493. CrossrefGoogle Scholar

  • [8]

    J. Chen and A. K. Gupta, Testing and locating variance change points with application to stock prices, Journal of the American Statistical Association, 92(1997), 739–747.

  • [9]

    J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis: With Applications to Genetics, Medcine and Finance. Birkhäuser: Boston, 2012.

  • [10]

    J. Chen, A. K. Gupta and J. Pan, Information criterion and change point problem for regular models, Sankhyā 68 (2006), no. 2, 252–282. Google Scholar

  • [11]

    H. Chernoff and S. Zacks, Estimating the current mean of a normal distribution which is subjected to changes in time, Ann. Math. Statist. 35 (1964), 999–1018. CrossrefGoogle Scholar

  • [12]

    J. H. Chin Choy and L. D. Broemeling, Some Bayesian inferences for a changing linear model, Technometrics 22 (1980), no. 1, 71–78. CrossrefGoogle Scholar

  • [13]

    M. Csörgö and L. Horváth, Limit Theorems in Change-point Analysis. Wiley: New York, 1997.

  • [14]

    P. E. Ferreira, A Bayesian analysis of a switching regression model: Known number of regimes, J. Amer. Statist. Assoc. 70 (1975), 370–374. CrossrefGoogle Scholar

  • [15]

    L. A. Gardner, Jr., On detecting changes in the mean of normal variates, Ann. Math. Statist. 40 (1969), 116–126. CrossrefGoogle Scholar

  • [16]

    D. L. Hawkins, A U-I approach to retrospective testing for shifting parameters in a linear model, Comm. Statist. Theory Methods 18 (1989), no. 8, 3117–3134. CrossrefGoogle Scholar

  • [17]

    D. L. Hawkins, Detecting shifts in functions of multivariate location and covariance parameters, J. Statist. Plann. Inference 33 (1992), no. 2, 233–244. CrossrefGoogle Scholar

  • [18]

    D. Holbert, A Bayesian analysis of a switching linear model, J. Econometrics 19 (1982), 77–87. CrossrefGoogle Scholar

  • [19]

    D. A. Hsu, Tests for variance shifts at an unknown time point, J. R. Stat. Soc. Ser. C. Appl. Stat. 26 (1977), 179–184. Google Scholar

  • [20]

    C. Inclán, Detection of multiple changes of variance using posterior odds, J. Bus. Econom. Statist. 11 (1993), 189–300. Google Scholar

  • [21]

    H.-J. Kim, Tests for a change-point in linear regression, Change-Point Problems (South Hadley 1992), IMS Lecture Notes Monogr. Ser. 23, Institute of Mathematical Statistics, Hayward (1994), 170–176. Google Scholar

  • [22]

    M. A. Mahmoud, P. A. Parker, W. H. Woodall and D. M. Hawkins, A change point method for linear profile data, Qual. Reliab. Eng. Internat. 23 (2007), 247–268. CrossrefGoogle Scholar

  • [23]

    G. Ngunkeng and W. Ning, Information approach for the change-point detection in the skew normal distribution and its applications, Sequential Anal. 33 (2014), no. 4, 475–490. Web of ScienceCrossrefGoogle Scholar

  • [24]

    E. S. Page, Continuous inspection schemes, Biometrika 41 (1954), 100–115. CrossrefGoogle Scholar

  • [25]

    E. S. Page, A test for a change in a parameter occurring at an unknown point, Biometrika 42 (1955), 523–527. CrossrefGoogle Scholar

  • [26]

    R. E. Quandt, The estimation of the parameters of a linear regression system obeying two separate regimes, J. Amer. Statist. Assoc. 53 (1958), 873–880. CrossrefGoogle Scholar

  • [27]

    R. E. Quandt, Tests of the hypothesis that a linear regression system obeys two separate regimes, J. Amer. Statist. Assoc. 55 (1960), 324–330. CrossrefGoogle Scholar

  • [28]

    L. J. Vostrikova, Detecting “disorder” in multidimensional random processes, Soviet Math. Dokl. 24 (1981), 55–59. Google Scholar

About the article

Received: 2017-04-14

Accepted: 2017-12-08

Published Online: 2018-01-23

Published in Print: 2018-03-01

Citation Information: Random Operators and Stochastic Equations, Volume 26, Issue 1, Pages 1–10, ISSN (Online) 1569-397X, ISSN (Print) 0926-6364, DOI: https://doi.org/10.1515/rose-2018-0001.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in