Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Environmental and Climate Technologies

The Journal of Riga Technical University

2 Issues per year

CiteScore 2016: 1.78

SCImago Journal Rank (SJR) 2016: 2.056
Source Normalized Impact per Paper (SNIP) 2016: 1.316

Open Access
See all formats and pricing
More options …

Increasing of Food and Bioenergy Potato Resources by Microbial Influence on Tubers Phytohormonal Status

Elena I. Kiprushkina / Denis A. Baranenko
Published Online: 2015-03-03 | DOI: https://doi.org/10.1515/rtuect-2014-0012


Potato and its by-products became a promising both food and bioenergy resource. The determination of the bacteriaantagonists influence on phytohormone status and productivity of potato tubers was studied. The indole-3-acetic acid content during the dormancy end and germinating in the tubers treated with Bacillus subtilis Ch-13 was fewer than in the control samples. L-tryptophan significant quantity compared to the control was found in the treated tubers in a state of physiological dormancy (more than 2-fold) and especially during active germination (43 times greater). Average potato yield increase at treated fields was of 18.8 %.

Keywords: Biological control; Solanum tuberosum; Bacillus subtilis Ch13; hormones; HPLC


  • 1. Haverkort, A. J., Struik, P. C., Visser, R. G. F., Jacobsen, E. Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 2009, vol. 52, No. 3, pp. 249-264. http://dx.doi.org/10.1007/s11540-009-9136-3CrossrefWeb of ScienceGoogle Scholar

  • 2. Kim, S., Dale, B. E. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 2004, vol. 26, pp. 361-375. http://dx.doi.org/10.1016/j.biombioe.2003.08.002CrossrefGoogle Scholar

  • 3. Lal, R. World crop residues production and implications of its use as a biofuel. Environment International, 2005, vol. 31, pp. 575-584. http://dx.doi.org/10.1016/j.envint.2004.09.005CrossrefGoogle Scholar

  • 4. Charmley, E., Nelson, D., Zvomuya, F. Nutrient cycling in the vegetable processing industry: Utilization of potato by-products. Canadian Journal of Soil Science, 2006, vol. 86, No. 4, pp. 621-629. http://dx.doi.org/10.4141/S05-118CrossrefGoogle Scholar

  • 5. Schieber, A., Stintzing, F. C., Carle, R. By-products of plant food processing as a source of functional compounds - recent developments. Trends in Food Science & Technology, 2001, vol. 12, No. 11, pp. 401-413. http://dx.doi.org/10.1016/S0924-2244(02)00012-2CrossrefGoogle Scholar

  • 6. Liang, S., McDonald, A. G. Сhemical and thermal characterization of potato peel waste and its fermentation residue as potential resources for biofuel and bioproducts production. Journal of Agricultural and Food Chemistry, 2014, vol. 62, No. 33, pp. 8421-8429. http://dx.doi.org/10.1021/jf5019406CrossrefWeb of ScienceGoogle Scholar

  • 7. Arapoglou, D., Varzakas, T., Vlyssides, A., Israilides, C. Ethanol production from potato peel waste (PPW). Waste Management, 2010, vol. 30, No. 10, pp. 1898-1902. http://dx.doi.org/10.1016/j.wasman.2010.04.017Web of ScienceCrossrefGoogle Scholar

  • 8. Djomo, S. N., Blumberga, D. Comparative life cycle assessment of three biohydrogen pathways. Bioresource Technology, 2011, vol. 102, No. 3, pp. 2684-2694. http://dx.doi.org/10.1016/j.biortech.2010.10.139CrossrefWeb of ScienceGoogle Scholar

  • 9. Djomo, S. N., Humbert, S., Blumberga, D. Life cycle assessment of hydrogen produced from potato steam peels. International Journal of Hydrogen Energy, 2008, vol. 33, No. 12, pp. 3067-3072. http://dx.doi.org/10.1016/j.ijhydene.2008.02.006CrossrefGoogle Scholar

  • 10. Arifin, Y., Tanudjaja, E., Dimyati, A., Pinontoan, R. A Second Generation Biofuel from Cellulosic Agricultural By-product Fermentation Using Clostridium Species for Electricity Generation. Energy Procedia, 2014, vol. 47, pp. 310-315. http://dx.doi.org/10.1016/j.egypro.2014.01.230CrossrefGoogle Scholar

  • 11. Conway, G. R., Pretty, J. N. Unwelcome harvest: agriculture and pollution. Routledge: Taylor & Francis, 2013.Google Scholar

  • 12. Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., Berg, G. Potatoassociated bacteria and their antagonistic potential towards plantpathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology, 2002, vol. 48, No. 9, pp. 772-786.CrossrefGoogle Scholar

  • 13. Stephan, D., Schmitt, A., Carvalho, S. M., Seddon, B., Koch, E. Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. European Journal of Plant Pathology, 2005, vol. 112, No. 3, pp. 235-246. http://dx.doi.org/10.1007/s10658-005-2083-1CrossrefGoogle Scholar

  • 14. Grosch, R., Faltin, F., Lottmann, J., Kofoet, A., Berg, G. Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Canadian Journal of Microbiology, 2005, vol. 51, No. 4, pp. 345-353. http://dx.doi.org/10.1139/w05-002CrossrefGoogle Scholar

  • 15. Chebotar, V. K., Makarova, N. M., Shaposhnikov, A. I., Kravchenko, L. V. Antifungal and phytostimulating characteristics of Bacillus subtilis Ch-13 rhizospheric strain, producer of bioprepations. Applied Biochemistry and Microbiology, 2009, vol. 45, No. 4, pp. 419-423. http://dx.doi.org/10.1134/S0003683809040127CrossrefWeb of ScienceGoogle Scholar

  • 16. Chebotar, V. K., Petrov, V. B., Shaposhnikov, A. I., Kravchenko, L. V. Biochemical criteria for estimation of agronomic valuable properties of bacilli used for development of microbial preparations. Agricultural Biology, 2011, vol. 3, pp. 119-122.Google Scholar

  • 17. Destefano-Beltrán, L., Knauber, D., Huckle, L., Suttle, J. C. Effects of postharvest storage and dormancy status on ABA content, metabolism, and expression of genes involved in ABA biosynthesis and metabolism in potato tuber tissues. Plant Molecular Biology, 2006, No. 61, pp. 687−697. http://dx.doi.org/10.1007/s11103-006-0042-7CrossrefGoogle Scholar

  • 18. Comai, L., Kosuge, T. Involvement of plasmid deoxyribonucleic acid in indoleacetic acid synthesis in Pseudomonas savastanoi. Journal of Bacteriology, 1980, vol. 143, No. 2, pp. 950−957.Google Scholar

  • 19. Yarullina, L. G., Troshina, N. B., Maksimov, I. V. Participation of IAA in suppression of protective reactions in wheat plants infected by smut agent. Micology and Phytopathology, 2006, vol. 40, No. 2, pp. 160−165.Google Scholar

  • 20. Ganenko, I. Costs rising again. Agroinvestor, 2011, vol, 42, No. 7, pp. 23−29. (in Russian)Google Scholar

About the article

Published Online: 2015-03-03

Published in Print: 2014-12-01

Citation Information: Environmental and Climate Technologies, ISSN (Online) 2255-8837, DOI: https://doi.org/10.1515/rtuect-2014-0012.

Export Citation

© Riga Technical University. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alexander Sizov, Ilia Krupnov, and Tatiana Meledina
Energy Procedia, 2017, Volume 113, Page 333
Gyanendra Singh Sisodia and Pragya Singh
Energy Procedia, 2016, Volume 95, Page 416
Ludmila Kuznetsova, Ludmila Zabodalova, Natalia Yakovchenko, and Maria Domoroshchenkova
Energy Procedia, 2016, Volume 95, Page 230

Comments (0)

Please log in or register to comment.
Log in