Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year

CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
See all formats and pricing
More options …

Littorella Uniflora (L.) Ascherson: A Review

Ing. Jan Kolář
  • Corresponding author
  • DiS., Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Kamýcká 129, 165 21 Prague 6-Suchdol, Czech Republic, phone: +420 775 694 372
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-25 | DOI: https://doi.org/10.2478/sab-2014-0101


Littorella uniflora (L.) Ascherson, a member of Plantaginaceae family, belongs to a group of isoetids - small, slow-growing, evergreen aquatic plants. They are characterized by strong and stiff basal leaves and a large amount of root biomass. Oligotrophic and mesotrophic freshwaters are typical habitats for this plant. L. uniflora is a boreal subatlantic European species. It is spread over whole western and northern Europe including the United Kingdom and Ireland. Austria, Czech Republic, and Poland lie on the southeast border of L. uniflora distribution. In the Czech Republic, as well as in the Netherlands or Ireland, the number of suitable habitats is rapidly decreasing. Therefore it is important to understand the needs of this macrophyte in order to propose quality rescue management to restore its population. This paper gives brief information about biology and ecological adaptations of L. uniflora. It also focuses on threats, distribution, and management at some of its current localities in the Czech Republic.

Keywords: denuded fishpond bottom; Plantaginaceae; oligotrophic habitat; isoetid


  • Act (1982): Decree from January 20th 1982 on the list of protected plant species. http://www.legifrance.gouv.fr/affich-Texte.do?cidTexte=JORFTEXT000000865328.Accessed 22Google Scholar

  • April, 2013. (in French) Google Scholar

  • Act (2004): Regulation No. 1784 of the Minister of Environment from July 9th 2004 on the protected wild plants species. http://isip.sejm.gov.pl/DetailsServlet?id=WDU20041681764&min=1. Accessed 22 April, 2013. (in Polish) Google Scholar

  • Arts GHP (2002): Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquatic Botany, 73, 373-393. doi: 10.1016/ S0304-3770(02)00031-1.CrossrefGoogle Scholar

  • Arts GHP, Leuven RSEW (1988): Floristic changes in soft water in relation to underlying environmental factors. Freshwater Biology, 20, 97-111. doi: 10.1111/j.1365-2427.1988. tb01721.x.CrossrefGoogle Scholar

  • Arts GHP, van der Heijden RAJM (1990): Germination ecology of Littorella uniflora (L.) Aschers. Aquatic Botany, 37, 139-151. doi: 10.1016/0304-3770(90)90087-2.CrossrefGoogle Scholar

  • Arts GHP, van der Velde G, Roelofs JGM, van Swaay CAM (1990): Successional changes in soft water macrophytes vegetation of (sub)atlantic, sandy lowlands during this century. Freshwater Biology, 24, 287-294. doi: 10.1111/j.1365-2427.1990.tb00709.x.CrossrefGoogle Scholar

  • Bekker RM, Lammerts EJ, Schmutter A, Grootjans AP (1999): Vegetation development in dune slacks: The role of persistent seed banks. Journal of Vegetation Science, 10, 745-754. doi: 10.2307/3237090.CrossrefGoogle Scholar

  • Bellemakers MJS, Maessen M, Verheggen GM, Roelofs JGM (1996): Effect of liming on shallow acidified moorland pools: a culture and a seed bank experiment. Aquatic Botany, 54, 37-50. doi: 10.1016/0304CrossrefGoogle Scholar

  • 3770(96)01030-3.Google Scholar

  • Bilz M, Kell SP, Maxted N, Lansdown RV (2011): European Red List of vascular plants. Publication Office of the European Union, Luxembourg. http://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_vascular_plants.pdf. Accessed 23 September, 2012.Google Scholar

  • Boston HL (1986): A discussion of the adaptation for carbon acquisition in relation to the growth strategy of aquatic isoetid. Annals of Botany, 60, 259-270. doi: 10.1016/0304-3770(86)90026-4.CrossrefGoogle Scholar

  • Christensen KK, Wigand C (1998): Formation of root plaques and their influence on tissue phosphorus content in Lobelia dortmanna. Aquatic Botany, 61, 111-122. doi: 10.1016/ S0304-3770(98)00067-9.CrossrefGoogle Scholar

  • Christensen KK, Andersen FO, Jensen HS (1997): Comparison of iron, manganese and phosphorus retention in freshwater littoral sediment with growth of Littorella uniflora and benthic microalgae.Google Scholar

  • Biogeochemistry, 38, 149-171. doi: 10.1023/A:1005736930062.CrossrefGoogle Scholar

  • Christiansen R, Friis NJS (1985): Leaf production and nitrogen and phosphorus tissue content of Littorella uniflora (L.) Aschers. In relation to nitrogen and phosphorus enrichment of the sediment inGoogle Scholar

  • oligotrophic Lake Hampen, Denmark. Aquatic Botany, 23, 1-11. doi: 10.1016/0304-3770(85)90016-6.CrossrefGoogle Scholar

  • Čítek J, Krupauer V, Kubů F (1992): Fish farming. Informato - rium, Prague. (in Czech) Google Scholar

  • Decree No. 395/1992 Coll. Ministry of Environment of the Czech Republic, as amended, to implement certain provisions of the Act of the Czech National Council No. 114/1992 Coll., on the protection of nature and landscape. http://www.mzp.cz/www/platnalegislativa.nsf/d79c09c54250df0dc1256e8900296e32/7698185c778da46fc125654b0044ddbc?OpenDocument. Accessed 22 April, 2013. (in Czech) Directive 97/62/EC from August 27th 1997 on the conservation of the natural habitats, wild fauna and flora against technical and scientific progress. Google Scholar

  • http://eur-lex.europa.eu/LexUriServ/LexUriServ.douri=CELEX:31997L0062:CS:NOT. Accessed 22 April, 2013Google Scholar

  • Dvořákova K, Boublík K (eds) (2002): Results of hydrobotani - cal excursion from working group for the study of water and wetlands macrophyte at CBS in Czech Canada (East Bohemia) in 2000. Reports ofGoogle Scholar

  • Czech Botanical Society, 37, 191-196. (in Czech) Ekrtová E, Čech L (2008): Floristic and vegetation survey at Horní Mrzatec fishpond located in Jihlavské vrchy. Acta rerum naturalium, 5, 195-206. (in Czech) Farmer AM (1985): The occurrence of vesicular-arbuscular mycorrhiza in isoetid-type submerged aquatic macrophytes under naturally varying conditions. Aquatic Botany, 21, 245-249. doi: 10.1016/0304-3770(85)90052-X.CrossrefGoogle Scholar

  • Farmer AM, Spence DHN (1986): The growth strategies and distribution of isoetids in Scottish freshwater lochs. Aquatic Botany, 26, 247-258. doi: 10.1016/0304-3770(86)90025-2.CrossrefGoogle Scholar

  • Gabrielová J, Horodynská E, Neuwirthová H (2012): The selection of species for endangered plants conservation programs.Google Scholar

  • In: Collection of Abstracts 10th Internat. Conference of Czech Botanical Society, Prague, p. 17 (in Czech) Grulich V (2012): Red List of vascular plants of the Czech Republic. 3rd Ed. Preslia, 84, 631-645.Google Scholar

  • Hejný S (1967): Problems of conservation and zoning of pond reservoirs from hydro botanical point of view. Ochrana přírody, 22, 83-90. (in Czech) Google Scholar

  • Hejný S (1978): Conservation of plant communities in fishpond littorals. In: Dykyjová D, Kvet J (eds): Pond littoral ecosystems. Springer Verlag, Berlin, Heidelberg, 429-433.Google Scholar

  • Hejný S (ed.) (2000): Plants of waters and shores. East West Publishing, Prague. (in Czech) Google Scholar

  • Hejný S, Husák S (1978): Ecological effect of fishpond amelioration. In: Dykyjová D, Kvet J (eds): Pond littoral ecosystems. Springer Verlag, Berlin, Heidelberg, 409-415.Google Scholar

  • Hesoun P, Husák S, Přikryl I, Skácelová O, Šumberová K (2008): Nature monument - Králek fishpond - monitoring of L. uniflora development. Unpublished report. Dep: Regional Council of South Bohemia, České Budějovice. (in Czech) Hostrup O, Wiegleb G (1991): Anatomy of leaves of submerged and emergent forms of Littorella uniflora (L.) Ascherson. Aquatic Botany, 39, 195-209. doi: 10.1016/0304-37 (91)90032-Z.CrossrefGoogle Scholar

  • Husák S, Adamec L (1998): Restore cultivation of endangered aquatic and wetland water plants species in the Institute of Botany in Třeboň. Příroda, 12, 7-26. (in Czech) Google Scholar

  • Hutchinson G (1975): A treatise on limnology: limnological botany. Vol. 3. Wiley, New York. Google Scholar

  • Iversen J (1929): Studies on the pH conditions of Danish waters and their influence on the hydrophytes vegetation. Botanisk Tidsskrift, 40, 277-326. (in German) Google Scholar

  • Jensen S (1979): Classification of lakes in southern Sweden on the basis of their macrophyte composition by means of multivariate methods. Vegetation, 39, 129-146. doi: 10.1007/ BF00208764.CrossrefGoogle Scholar

  • Jílek B (1956): The phytosociology of fishpond communities. Preslia, 28, 66-77. (in Czech) Google Scholar

  • John H, Richert E (2011): Hydrochory of Littorelletea and Isoeto-Nanojuncetea species in the Erzgebirge (Germany). Tuexenia, 31, 87-104.Google Scholar

  • Klika J (1935): The plant communities of the pond exposed bottoms in Central Europe. Beihefte zum Botanischen Centralblatt, 53, 286-310. (in German) Google Scholar

  • Květ J (1999): Svět fishpond is not just for the carp productio n. Třeboňský svět, 6, 14. (in Czech) Google Scholar

  • Lawesson JE (2004): A tentative annotated checklist of Danish syntaxa. Folia Geobotanica, 39, 73-95. doi: 10.1007/ BF02803265.CrossrefGoogle Scholar

  • Madsen TV (2002): Carbon acquisition and carbon dynamics by aquatic isoetids. Aquatic Botany, 73, 351-371. doi: 10.1016/ S0304-3770(02)00030-X.CrossrefGoogle Scholar

  • McElarney YR, Rasmussen P, Foy RH, Anderson NJ (2010): Response of aquatic macrophytes in northen Irish softwater lakes to forestry management; eutrophication and dissolved organic carbon. Aquatic Botany, 93, 227-236. doi: 10.1016/j. aquabot.2010.09.002.CrossrefGoogle Scholar

  • Murphy PJ (2002): Plant communities and plant diversity in softwater lakes in northern Europe. Aquatic Botany, 73, 287-324. doi: 10.1016/S0304-3770(02)00028-1.CrossrefGoogle Scholar

  • Nielsen SL, Sand-Jensen K (1997): Growth rates and morphological adaptations of aquatic and terrestrial forms of amphibious Littorella uniflora (L.) Aschers. Plant Ecology, 129, 135-140. doi: 10.1023/A:1009715914979.CrossrefGoogle Scholar

  • Palmer MA, Bell SL, Butterfield I (1992): A botanical classification of standing waters in Britain: applications for conservation and monitoring. Aquatic Conservation: Marine and Freshwater Ecosystems, 2, 125-143. doi: 10.1002/ aqc.3270020202.CrossrefGoogle Scholar

  • Pedersen O, Sand-Jensen K (1992): Adaptation of submerged Lobelia dortmana to aerial life form: morphology, carbon sources and oxygen dynamics. Oikos, 65, 89-96.CrossrefGoogle Scholar

  • Pokorný J, Husák S, Květ J (1990): Perspective of fishpond multi-use. In: Rambousková H, Trpák P (eds): The sustainable development strategy. Vol. 2. Collection of abstracts from the conference of the Study information and documents to the environment Department of Ecology of the Czech Botanical Society and the Ministry of the Environment, Prague. (in Czech) Google Scholar

  • Procházka F, Husák S (1999): Littorella uniflora (L.) Ascherson. In: Čerovský J, Feraková V, Holub J, Maglocký S, Procházka F (eds): Red List of endangered and rare species of the Czech and Slovak Republics. 5. Vascular plants. Príroda, Bratislava. (in Czech) Google Scholar

  • Risgaard-Petersen N, Jensen K (1997): Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography, 42, 529-537.CrossrefGoogle Scholar

  • Robe WE, Griffiths H (1998): Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora. New Phytologist, 140, 9-23. doi: 10.1046/j.1469-8137.1998.00257.x.CrossrefGoogle Scholar

  • Roelofs JGM, Schmuurkes JAAR, Smits AJM (1984): Impact of acidification and eutrophication on macrophyte communities in soft waters. Aquatic Botany, 18, 389-411. doi: 10.1016/0304-3770(83)90110-9.CrossrefGoogle Scholar

  • Roelofs JGM, Brandrud TE, Smolders AJP (1994): Massive expansion of Juncus bulbosus L. after liming of acidified SW Norwegian lakes. Aquatic Botany, 48, 187-202. doi: 10.1016/0304-3770(94)90015-9.CrossrefGoogle Scholar

  • Sand-Jensen K (1978): Metabolic adaptation and vertical zonation of Littorella uniflora (L.) Aschers. and Isoetes lacustris L. Aquatic Botany, 4, 1-10. doi: 10.1016/0304-3770(78)90002-5.CrossrefGoogle Scholar

  • Sand-Jensen K, Sondergaard M (1981): Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 66, 529-552. doi: 10.1002/iroh.19810660406.CrossrefGoogle Scholar

  • Sand-Jensen K, Prahl C, Stokholm H (1982): Oxygen release from roots of submerged aquatic macrophytes. Oiko, 38, 349-354.CrossrefGoogle Scholar

  • Schoof-van Pelt M (1973): Littorelletea: a study of the vegetation of some amphiphytic communities of western Europe. Stichting Studentenpers, Nijmegen.Google Scholar

  • Schuurkes JAAR., Kok CJ, Der Hartog C (1986): Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified water. Aquatic Botany, 24, 131-146. doi: 10.1016/0304-3770(86)90093-8.CrossrefGoogle Scholar

  • Sculthorpe CD (1985): The biology of aquatic vascular plants. Koeltz Scientific Books, Königstein.Google Scholar

  • Škrlant M (2010): Monitoring of plant biodiversity in Láz water reservoir. Bc. Thesis, University of West Bohemia. (in Czech) Google Scholar

  • Slavík B (ed.) (2000): Flora of the Czech Republic, part 6. Academia, Prague. (in Czech) Google Scholar

  • Smith AJM, Laan P, Thier RH, van der Velde G (1990): Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of roots of some nymphaeid and isoetid macrophytes in relation to the sediment type of their habitat. Aquatic Botany, 47, 349-353. doi: 10.1016/0304-3770(90)90095-3.CrossrefGoogle Scholar

  • Smolders AJP, Roelofs JGM (1996): The roles of internal iron hydroxide precipitation, sulphide toxicity and oxidizing ability in the survival of Stratiotes aloides roots at different iron concentrations in sediment pore water. New Phytologist, 133, 253-260. doi: 10.1111/j.1469-8137.1996.tb01892.x.CrossrefGoogle Scholar

  • Smolders AJP, Lamers LPM, Moonen M, Zwaga K, Roelofs JGM (2001): Controlling phosphate release from phosphateenriched sediments by adding various iron compounds. Biogeochemistry, 54, 219-228. doi: 10.1023/A:1010660401527.CrossrefGoogle Scholar

  • Smolders AJP, Lucassen ECHET, Roelofs JGM (2002): The isoetid environment: biogeochemistry and threats. Aquatic Botany, 73, 325-350. doi: 10.1016/S0304-3770(02)00029-3.CrossrefGoogle Scholar

  • Sosnová M, Kučerová A, Adamec L, Husák S (2012): Reintro - duction of endangered wetland plant species to Trebon Basin sand-pits. In: Collection of Abstracts 8th European Conference on Ecological Restoration, České Budějovice, 109-110.Google Scholar

  • Spierenburg P, Lucassen ECHET, Pulido C, Smolders AJP, Roelofs JGM (2012): Massive uprooting of Littorella uniflora (L.) Asch. during a storm event and its relation to sediment and plant characteristics. Plant Biology, 15, 955-962. doi: 10.1111/j.1438-8677.2012.00707.x.CrossrefGoogle Scholar

  • Šumberová K (2011): Amphibious vegetation with Littorella uniflora. In: Chytrý M (ed.): Vegetation of the Czech Republic 3. Aquatic and wetland vegetation. Academia, Prague, 282-286. (in Czech) Szankowski M, Klosowski S (2006): Habitat variability of the Littorelletea uniflorae plant communities in Polish Lobelia lakes. Hydrobiologia, 570, 117-126. doi: 10.1007/978-1-4020-5390-0_17.Google Scholar

  • Szmeja J (1994): Dynamics of the abundance and spatial organisation of isoetid population in an oligotrophic lake. Aquatic Botany, 49, 19-32. doi: 10.1016/0304-3770(94)90003-5.CrossrefGoogle Scholar

  • Thompson K, Bakker JP, Bekker RM (1997): The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge.Google Scholar

  • Thunmark S (1931): Lake Fionen and its vegetation. Acta Phytogeographica Suecica, Uppsala. (in German) Google Scholar

  • Vestergaard OS, Sand-Jensen K (2000): Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany, 67, 85-107. doi: 10.1016/S0304-3770(00)00086-3. CrossrefGoogle Scholar

  • West G (1905): A comparative study of the dominant phanerogamic and higher cryptogamic flora of aquatic habitat in three lake areas of Scotland. Proceedings of the Royal Society of Edinburgh, 25, 967-1023.Google Scholar

  • Wigand C, Andersen FO, Christensen KK, Holmer M, Jensen HS (1998): Endomycorrhizae of isoetids along a biogeochemical gradient. Limnology and Oceanography, 43, 508-515.CrossrefGoogle Scholar

  • Wynhoff I (1988): Germination and vegetation development in berenings experiments with sediment. Report 248, Laboratory of Aquatic Ecology, Catholic University, Nijmegen. (in Dutch) Google Scholar

About the article

Received: 2014-06-03

Accepted: 2013-10-01

Published Online: 2014-11-25

Published in Print: 2014-09-01

Citation Information: Scientia Agriculturae Bohemica, Volume 45, Issue 3, Pages 147–154, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.2478/sab-2014-0101.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in