Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year

CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
See all formats and pricing
More options …

Mechanical Properties of Granular Materials and Their Impact on Load Distribution in Silo: A Review

J. Horabik / M. Molenda
Published Online: 2015-01-29 | DOI: https://doi.org/10.1515/sab-2015-0001


Mechanical properties of granular materials and their impact on load distribution in storage silo were discussed with special focus on materials of biological origin. Granular materials classification was briefly outlined. The evolution of constitutive models of granular materials developed in the frame of mechanics of continuum was addressed. Analytical methods, Finite Element Methods (FEM), and Discrete Element Methods (DEM) of estimation of silo pressure were discussed. Special attention was paid to the following issues: dynamic pressure switch in the first moment of silo discharge, asymmetry of loads due to eccentric discharge, and impact of uncontrolled increase of moisture content of grain on silo pressures.

Keywords: granular material; cereal grain; silo; pressure distribution; DEM


  • Anand A, Curtis JS, Wassgren CS, Hancock BC, Ketterhagen WR (2009): Predicting discharge dynamics of wet cohesive particles from a rectangular hopper using the discrete element method (DEM). Chemical Engineering Science, 64, 5268-5275. doi: 10.1016/j.ces.2009.09.001.CrossrefGoogle Scholar

  • Balevičiu R, Sielamowicz I, Mróz Z, Kačianauskas R (2011): Investigation of wall stress and outflow in a flat-bottomed bin: a comparison of the DEM model results with the experimental measurements. Powder Technology, 214, 322-336. doi: 10.1016/j.powtec.2011.08.042.CrossrefGoogle Scholar

  • Blight GE (1986): Swelling pressure of wetted grain. Bulk Solids Handling, 6, 1135-1140.Google Scholar

  • Borcz A, Hamdy HA Abd-el-Rahim (1991): Wall pressure measurements in eccentrically discharged cement silos. Bulk Solids Handling, 11, 469-476.Google Scholar

  • Bransby PL, Blair-Fish PM (1975): Deformations near rupture surfaces in flowing sand. Géotechnique, 25, 384-389.CrossrefGoogle Scholar

  • Britton MG, Zhang Q, McCullagh K (1993): Moisture induced vertical loads in model grain bin. ASAE Paper No. 93-4503, St. Joseph.Google Scholar

  • Chattopadhyay A, Rao RK, Parameswaran MA (1994): On the classification of bulk solids. Bulk Solids Handling, 14, 339-344.Google Scholar

  • Cundall PA, Strack OD (1979): A discrete element model for granular assemblies. Géotechnique, 29, 47-65.Google Scholar

  • Dale AC, Robinson RN (1954): Pressure in deep grain storage structures. Agricultural Engineering, 35, 570-573.Google Scholar

  • Drescher A (1991): Analytical methods in bin-load analysis. Elsevier, Amsterdam-Oxford-New York-Tokyo.Google Scholar

  • Drescher A, Cousens TW, Bransby PL (1978): Kinematics of the mass flow of granular material through a plane hopper. Géotechnique, 28, 27-42.CrossrefGoogle Scholar

  • Drucker DC, Prager W (1952): Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics, 10, 157-165.Google Scholar

  • Eurocode 1 (2003): Actions on structures. Part 4: Actions in silos and tanks. Ref. No. EN 1991-4.Google Scholar

  • González-Montellano C, Gallego E, Ramírez-Gómez Á, Ayuga F (2012): Three dimensional discrete element models for simulating the filling and emptying of silos: Analysis of numerical results. Computers and Chemical Engineering, 40, 22-32. doi: 10.1016/j.compchemeng.2012.02.007.CrossrefGoogle Scholar

  • Guaita M, Couto A, Ayuga F (2003): Numerical simulation of wall pressure during discharge of granular material from cylindrical silos with eccentric hoppers. Biosystems Engineering, 85, 101-109.Google Scholar

  • Holst JMFG, Ooi JY, Rotter JM, Rong GH (1999): Numerical modeling of silo filling II. Discrete element analyses. Journal of Engineering Mechanics - ASCE, 125, 104-110.Google Scholar

  • Horabik J, Molenda M (2000): Grain pressure in a model silo as affected by moisture content increase. International Ag-rophysics, 14, 385-392.Google Scholar

  • ISO 3535 (1977): Continuous mechanical handling equipment -Classification and symbolisation of bulk materials. International Standard. ISO, Geneva.Google Scholar

  • Iwashita K, Oda M (2000): Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology, 109, 192-205.Google Scholar

  • Jaeger HM, Nagel SR, Behringer RP (1996): Granular solids, liquids and gases. Reviews of Modern Physics, 68, 1259-1273.CrossrefGoogle Scholar

  • Janssen HA (1895): Experiments on grain pressure in silos. Verein Deutscher Ingenieure, Zetschrift (Düsseldorf), 39, 1045-1049. (in German)Google Scholar

  • Jenike AW (1961): Gravity flow of bulk solids. Bulletin of the University of Utah, 52, 1-309.Google Scholar

  • Jian F, Jayas DS (2012): The ecosystem approach to grain storage. Agricultural Research, 1, 148-156. doi: 10.1007/ s40003-012-0017-7.CrossrefGoogle Scholar

  • Johnson KL, Kendall K, Roberts AD (1971): Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 324, 301-313.Google Scholar

  • Kobyłka R, Molenda M (2013): DEM modelling of silo load asymmetry due to eccentric filling and discharge. Powder Technology, 233, 65-71. doi: 10.1016/j.powtec.2012.08.039.CrossrefGoogle Scholar

  • Kobyłka R, Molenda M (2014): DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction. Powder Technology, 256, 210-216. doi: 10.1016/j.powtec.2014.02.030.CrossrefGoogle Scholar

  • Kou HP, Knight PC, Parker DJ, Tsuji Y, Adams MJ, Seville JPK (2002): The influence of DEM simulation parameters on the particle behaviour in a V-mixer. Chemical Engineering Science, 57, 3621-3638.Google Scholar

  • Kuwabara G, Kono K (1987): Restitution coefficient in a collision between 2 spheres. Japanese Journal of Applied Physics, 26, 1230-1233.Google Scholar

  • Łapko A (2010): Pressure of agricultural bulk solids under eccentric discharging of cylindrical concrete silo bin. International Agrophysics, 24, 51-56.Google Scholar

  • Masson S, Martinez J (2000): Effect of particle mechanical properties on silo flow and stress from distinct element simulations. Powder Technology, 109, 164-178. doi: 10.1016/ S0032-5910(99)00234-X.CrossrefGoogle Scholar

  • Molenda M, Horabik J, Ross IJ (1996): Wear-in effects on loads and flow in a smooth-wall bin. Transactions of the ASAE, 39, 225-231.CrossrefGoogle Scholar

  • Molenda M, Horabik J, Thompson SA, Ross IJ (2002): Bin loads induced by eccentric filling and discharge of grain. Transactions of the ASAE, 45, 781-785.CrossrefGoogle Scholar

  • Muite BK, Quinn SF, Sundaresan S, Rao KK (2004): Silo music and silo quake: granular flow-induced vibration. Powder Technology, 145, 190-202. doi: 10.1016/j.po-wtec.2004.07.003.CrossrefGoogle Scholar

  • Mühlhaus HB, Vardoulakis I (1987): The thickness of shear bands in granular materials. Géotechnique, 37, 271-283.CrossrefGoogle Scholar

  • Ord A, Hobbs B, Regenauer-Lieb K (2007): Shear band emergence in granular materials -a numerical study. International Journal for Numerical and Analytical Methods in Geome-chanics, 31, 373-393. doi: 10.1002/nag.590.CrossrefGoogle Scholar

  • Parafiniuk P, Molenda M, Horabik J (2013): Discharge of rapeseeds from a model silo: physical testing and DistinctGoogle Scholar

  • Element Method simulation. Computers and Electronics in Agriculture, 97, 40-46.Google Scholar

  • Peleg M (1985): The role of water in rheology of hygroscopic food powders. In: Simataos D, Multon JL (eds): Properties of water in foods. Martinus Nijhoff Publishers, Dordrecht, 394-404.Google Scholar

  • Potyondy DO, Cundall PA (2004): A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364. doi: 10.1016/j. ijrmms.2004.09.011.CrossrefGoogle Scholar

  • Roberts AW (2012): Review of silo loadings associated with the storage of bulk granular materials. In: CIGR-AgEng 2012 International Conference of Agricultural Engineering, Valencia, Spain, pp. C-0016.Google Scholar

  • Roberts AW, Wensrich CM (2002): Flow dynamics or 'quaking' in gravity discharge from silos. Chemical Engineering Science, 57, 295-305.CrossrefGoogle Scholar

  • Rong GH, Negi SC, Jofriet JC (1995): Simulation of flow behaviour of bulk solids in bins. Part 2: Shear bands, flow corrective inserts and velocity profiles. Journal of Agricultural Engineering Research, 62, 257-269. doi: 10.1006/ jaer.1995.1084.CrossrefGoogle Scholar

  • Sykut J, Molenda M, Horabik J (2008): Influence of filling method on packing structure in model silo and DEM simulations. Granular Matter, 10, 273-278.Google Scholar

  • Tejchman J (1998): Numerical simulation of filling in silos with a polar hypoplastic constitutive model. Powder Technology, 96, 227-239. doi: 10.1016/S0032-5910(97)03378-0.CrossrefGoogle Scholar

  • Tejchman J, Gudehus G (1993): Silo-music and silo-quake experiments and a numerical Cosserat approach. Powder Technology, 76, 201-212. doi: 10.1016/S0032-5910(05)80028-2.CrossrefGoogle Scholar

  • Tejchman J, Wu IW (1993): Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mechanica, 99, 69-74.Google Scholar

  • Thornton C, Ning Z (1998): A theoretical model for the stick/ bounce behaviour of adhesive, elastic-plastic spheres. Powder Technology, 99, 154-162. doi: 10.1016/S0032-5910(98)00099-0.CrossrefGoogle Scholar

  • Wang Y, Wensrich CM, Ooi JY (2012): Rarefaction wave propagation in tapered granular columns. Chemical Engineering Science, 71, 32-38. doi: 10.1016/j.ces.2011.12.023.CrossrefGoogle Scholar

  • Wensrich C (2002): Experimental behaviour of quaking in tall silos. Powder Technology, 127, 87-94. doi: 10.1016/S0032-5910(02)00105-5.CrossrefGoogle Scholar

  • Wensrich C (2003): Numerical modeling of quaking in tall silos. International Journal of Mechanical Sciences, 45, 541-551. doi: 10.1016/S0020-7403(03)00057-2.CrossrefGoogle Scholar

  • Wiącek J, Molenda M (2011): Moisture-dependent physical properties of rapeseed - experimental and DEM modeling. International Agrophysics,25, 59-65,Google Scholar

  • Wójcik M., Tejchman J (2009): Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technology, 192, 298-310.Google Scholar

  • Wojtkowski M, Pecen J, Horabik J, Molenda M (2010): Impact of rapeseed against flat surface: Physical testing and DEM simulation with two contact models. Powder Technology, 198, 61-68. doi: 10.1016/j.powtec.2009.10.015.CrossrefGoogle Scholar

  • Zhang Q, Britton MG (1995): Predicting hygroscopic loads in grain storage bins. Transactions of the ASAE, 38, 1221-1226.CrossrefGoogle Scholar

  • Zhang Q, Britton MG, Jaremek R (1993): Dynamic loads during discharge for wheat, barley and canola in a smooth and a corrugated-walled model bin. Journal of Agricultural Engineering Research, 56, 111-119. doi: 10.1006/jaer.1993.1065.CrossrefGoogle Scholar

  • Zhang Q, Puri VM, Manbeck HB (1994): Applicability of a two-parameter failure criterion to wheat en masse. Transactions of the ASAE, 37, 571-575.Google Scholar

About the article

Received: 2014-09-02

Accepted: 2014-09-21

Published Online: 2015-01-29

Citation Information: Scientia Agriculturae Bohemica, Volume 45, Issue 4, Pages 203–211, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.1515/sab-2015-0001.

Export Citation

© 2014 J. Horabik and M. Molenda. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in