Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year

CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
See all formats and pricing
More options …

Cumulus Cell Expansion, Its Role in Oocyte Biology and Perspectives of Measurement: A Review

J. Nevoral
  • Corresponding author
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Orsák
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Chemistry, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Klein / J. Petr / M. Dvořáková
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Weingartová
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Vyskočilová
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Zámostná
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Krejčová
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Jílek
  • University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-29 | DOI: https://doi.org/10.1515/sab-2015-0002


Cumulus expansion of the cumulus-oocyte complex is necessary for meiotic maturation and acquiring developmental competence. Cumulus expansion is based on extracellular matrix synthesis by cumulus cells. Hyaluronic acid is the most abundant component of this extracellular matrix. Cumulus expansion takes place during meiotic oocyte maturation under in vivo and in vitro conditions. Quantification and measurement of cumulus expansion intensity is one possible method of determining oocyte quality and optimizing conditions for in vitro cultivation. Currently, subjective methods of expanded area and more exact cumulus expansion measurement by hyaluronic acid assessment are available. Among the methods of hyaluronic acid measurement is the use of radioactively labelled synthesis precursors. Alternatively, immunological and analytical methods, including enzyme-linked immunosorbent assay (ELISA), spectrophotometry, and high-performance liquid chromatography (HPLC) in UV light, could be utilized. The high sensitivity of these methods could provide a precise analysis of cumulus expansion without the use of radioisotopes. Therefore, the aim of this review is to summarize and compare available approaches of cumulus expansion measurement, respecting special biological features of expanded cumuli, and to suggest possible solutions for exact cumulus expansion analysis.

Keywords: oocyte; cumulus-oocyte complex; cumulus expansion; hyaluronic acid; spectrophotometry; high-performance liquid chroma-tography


  • Alkrad JA, Mrestani Y, Stroehl D, Wartewig S, Neubert R (2003): Characterization of enzymatically digested hyaluronic acid using NMR, Raman, IR, and UV-Vis spectrosco-pies. Journal of Pharmaceutical and Biomedical Analysis, 31, 545-550. doi: 10.1016/S0731-7085(02)00682-9.CrossrefGoogle Scholar

  • Amale MH, Shahne AZ, Abavisani A, Nasrollahi S (2011): Effect of inhibiting nitric oxide synthase on cumulus expansion and nuclear maturation of sheep oocytes. Czech Journal of Animal Science, 56, 284-291.Google Scholar

  • Assou S, Haouzi D, De Vos J, Hamamah S (2010): Human cumulus cells as biomarkers for embryos and pregnancy outcomes. Molecular Human Reproduction, 16, 531-538. doi: 10.1093/molehr/gaq032.PubMedCrossrefGoogle Scholar

  • Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S (2013): Absence of cumulus cells in vitro maturation affects lipid metabolism in bovine oocytes. American Journal of Physiology, Endocrinology and Metabolism, 304, E599-E613. doi: 10.1152/ajpen-do.00469.2012.CrossrefGoogle Scholar

  • Bartolazzi A, Nocks A, Aruffo A, Spring F, Stamenkovic I (1996): Glycosylation of CD44 is implicated in CD44-me-diated cell adhesion to hyaluronan. Journal of Cell Biology, 132, 1199-1208. doi: 10.1083/jcb.132.6.1199.CrossrefGoogle Scholar

  • Bergandi L, Basso G, Evangelista F, Canosa S, Dalmasso P, Aldieri E, Revelli A, Benedetto C, Ghigo D (2014): Inducible nitric oxide synthase and heme oxygenase 1 are expressed in human cumulus cells and may be used as biomarkers of oocyte competence. Reproductive Sciences, 21, 1370-1377. doi: 10.1177/1933719114525268.Google Scholar

  • Brower PT, Schultz RM (1982): Intercellular communication between granulosa cells and mouse oocytes - existence and possible nutritional role during oocyte growth. Developmental Biology, 90, 144-153. doi: 10.1016/0012-1606(82)90219-6.CrossrefGoogle Scholar

  • Calder MD, Caveney AN, Westhusin ME, Watson AJ (2001): Cyclooxygenase 2 and prostaglansin E2 (PGE2) receptor messenger RNAs are affected by bovine oocyte maturation time and cumulus-oocyte complex quality, and PGE2 induces moderate expansion of the bovine cumulus in vitro. Biology of Reproduction, 65, 136-140. doi: 10.1095/biol-reprod65.1.135.CrossrefGoogle Scholar

  • Caroll J, Swann K, Whittingham D, Whitaker M (1994): Spatiotemporal dynamics of intracellular [Ca2+]i oscilation during the growth and meiotic maturation of mouse oocytes. Development, 120, 3507-3517.Google Scholar

  • Chen L, Wert SE, Hendrix EM, Russell PT, Cannon M, Larsen WJ (1990): Hyaluronic acid synthesis and gap junction endocytosis are necessary for normal expansion of cumulus mass. Molecular Reproduction and Development, 26, 236-247. doi: 10.1002/mrd.1080260307.CrossrefGoogle Scholar

  • Chen L, Mao SJ, Larsen WJ (1992): Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-alpha-trypsin inhibitor family. Journal of Biological Chemistry, 267, 12380-12386.Google Scholar

  • Chen L, Russell PT, Larsen WJ (1993): Functional significance of cumulus expansion in the mouse: role for the preovula-tory synthesis of hyaluronic acid within the cumulus mass. Molecular Reproduction and Development, 34, 87-93. doi: 10.1002/mrd.1080340114.CrossrefGoogle Scholar

  • Chen Q, Li XL, Liu Q, Jiano QC, Cao WG, Wan H (2005): Investigation the binding interaction of azur A with hyaluronic acid via spectrophotometry and its analytical application. Analytical and Bioanalytical Chemistry, 382, 1513-1519.Google Scholar

  • Chesnel F, Wigglesworth K, Eppig JJ (1994): Acquisition of meiotic competence by denuded mouse oocytes: participation of somatic-cell product(s) and cAMP. Developmental Biology, 161, 285-295. doi: 10.1006/dbio.1994.1028.CrossrefGoogle Scholar

  • Chmelikova E, Jeseta M, Sedmikova M, Petr J, Tumova L, Kott T, Lipovova P, Jilek F (2010): Nitric oxide synthase isoforms and the effect of their inhibition on meiotic maturation of porcine oocytes. Zygote, 18, 235-244. doi: 10.1017/ S0967199409990268.CrossrefPubMedGoogle Scholar

  • Chockalingam PS, Zeng WL, Morris EA, Flannery CR (2004): Release of hyaluronan and hyaladherins (aggrecan G1 domain and link proteins) from articular cartilage exposed to ADAMTS-4 (aggrecanase 1) or ADAMTS-5 (aggrecanase 2). Arthritis and Rheumatism, 50, 2839-2848. doi: 10.1002/art.20496.CrossrefGoogle Scholar

  • Daen FP, Sato E, Naito K, Toyoda Y (1994): The effect of pig follicular fluid fractions on cumulus expansion and male pronucleus formation in porcine oocytes matured and fertilized in vitro. Journal of Reproduction and Fertility, 101, 667-673.CrossrefGoogle Scholar

  • Dekel N, Beers WH (1980): Development of the rat oocyte in vitro: inhibition and induction of maturation in the presencePubMedGoogle Scholar

  • or absence of the cumulus oophorus. Developmental Biology, 75, 247-254. doi: 10.1016/0012-1606(80)90160-8.PubMedCrossrefGoogle Scholar

  • Dekel N, Hillensjo Y, Kraicer PF (1979): Maturation effects of gonadotropins on the cumulus-oocyte complex of the rat. Biology of Reproduction, 20, 191-197. doi: 10.1095/ biolreprod20.2.191.CrossrefGoogle Scholar

  • Dekel N, Lawrence TS, Gilula NB, Beers W (1981): Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH. Developmental Biology, 86, 356-362. doi: 10.1016/0012-1606(81)90193-7.CrossrefPubMedGoogle Scholar

  • Dekel N, Galiani D, Sherizly I (1988): Dissociation between the inhibitory and the stimulatory action of cAMP on maturation of rat oocytes. Molecular and Cellular Endocrinology, 56, 115-121. doi: 10.1016/0303-7207(88)90015-9.CrossrefPubMedGoogle Scholar

  • Ding J, Foxcroft GR (1994): Epidermal growth factor enhances oocyte maturation in pigs. Molecular Reproduction and Development, 39, 30-40. doi: 10.1002/mrd.1080390106.CrossrefGoogle Scholar

  • Dode MA, Graves C (2002): Involvement of steroid hormones on in vitro maturation of pig oocytes. Theriogenology, 15, 811-821. doi: 10.1016/S0093-691X(01)00700-2.CrossrefGoogle Scholar

  • Dostal J, Pavlok A (1996): Isolation and characterization of maturation inhibiting compound in bovine follicular fluid. Reproduction Nutrition Development, 36, 681-690.Google Scholar

  • Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Armstrong DT, Gilchrist RB (2005): Role of oocyte-secreted growth differentiation factor 9 in the regulation of mouse cumulus expansion. Endocrinology, 146, 2798-2806. doi: 10.1210/ en.2005-0098.CrossrefGoogle Scholar

  • Dragovic RA, Ritter LJ, Schulz SJ, Amato F, Thompson JG, Armstrong DT, Gilchrist RB (2007): Oocyte secreted factor activation of SMAD 2/3 signalling enables initiation of mouse cumulus cell expansion. Biology of Reproduction, 76, 848-857. doi: 10.1095/biolreprod.106.057471.CrossrefGoogle Scholar

  • Dunbar BS, Munoz MG, Cordle CT, Metz CB (1976): Inhibition of fertilization by treatment of rabbit spermatozoa with univalent isoantibodies to rabbit sperm hyaluronidase. Journal of Reproduction and Fertility, 47, 381-384.Google Scholar

  • Elvin JA, Clark AT, Wang P, Wolfman NM, Matzuk MM (1999): Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Molecular Endocrinology, 13, 1035-1048.CrossrefGoogle Scholar

  • Elvin JA, Yan C, Matzuk MM (2000): Growth differentiation factor-9 stimulates progesterone synthesis in granulosa cells via a prostaglandin E2/EP2 receptor pathway. Proceedings of the National Academy of Sciences of the United States of America, 97, 10288-10293. doi: 10.1073/pnas.180295197.Google Scholar

  • Engstrom-Laurent A, Hallgren R (1985): Circulating hyaluronate in rheumatoid arthritis: relationship to inflammatory activity and the effect of corticosteroid therapy. Annals of the Rheumatic Diseases, 44, 83-88. doi: 10.1136/ard.44.2.83.CrossrefGoogle Scholar

  • Eppig JJ (1979): FSH stimulates hyaluronic acid synthesis by oocyte-cumulus cell complexes from mouse preovulatory follicles. Nature, 281, 483-484. doi: 10.1038/281483a0.CrossrefGoogle Scholar

  • Eppig JJ (1980): Role of serum in FSH stimulated cumulus expansion by mouse oocyte-cumulus cell complexes in vitro. Biology of Reproduction, 22, 629-633.Google Scholar

  • Eppig JJ (1981): Prostaglandin E2 stimulates cumulus expansion and hyaluronic acid synthesis by cumuli oophori isolated from mice. Biology of Reproduction, 25, 191-195. doi: 10.1095/biolreprod25.1.191.CrossrefGoogle Scholar

  • Eppig JJ, Peters AHFM, Telfer EE, Wigglesworth K (1993): Production of cumulus expansion enabling factor by mouse oocytes growth in vitro: preliminary characterization of the factor. Molecular Reproduction and Development, 34, 450-456. doi: 10.1002/mrd.1080340415.CrossrefGoogle Scholar

  • Fagbohun CF, Downs SM (1990): Maturation of the mouse oocyte-cumulus cell complex - stimulation by lectins. Biology of Reproduction, 42, 413-423. doi: 10.1095/biol-reprod42.3.413.CrossrefGoogle Scholar

  • Feuerstein P, Puard V, Chevalier C, Teusan R, Cadoret V, Guerif F, Houlgatte R, Royere D (2012): Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS ONE, 7, e40449. doi:10.1371/journal. pone.0040449.CrossrefGoogle Scholar

  • Flechon JE, Degrouard J, Kopecny V, Pivko J, Pavlok A, Motlik J (2003): The extracellular matrix of porcine mature oocytes: origin, composition and presumptive roles. Reproductive Biology and Endocrinology, 1. doi10.1186/1477-7827-1-124.CrossrefGoogle Scholar

  • Fraser SP (1997): Hyaluronan activates calcium-dependent chloride currents in Xenopus oocytes. FEPBS Letters, 404, 56-60. doi: 10.1016/S0014-5793(97)00083-5.CrossrefGoogle Scholar

  • Freter RR, Schultz RM (1984): Regulation of murine oocyte meiosis: evidence for a gonadotropin-induced, cAMP-dependent reduction in a maturation inhibitor. The Journal of Cell Biology, 98, 1119-1128. doi: 10.1083/jcb.98.3.1119.CrossrefGoogle Scholar

  • Fulop C, Kamath RV, Li Y, Otto JM, Salustri A, Olsen BR, Glant TT, Hascall VC (1997): Coding sequence, exon-intron structure and chromosomal localization of murine TNF-stimulated gene 6 that is specifically expressed by expanding cumulus cell-oocyte complexes. Gene, 202, 95-102.Google Scholar

  • Furnus CC, Valcarcel A, Dulout FN, Errecalde AL (2003): The hyaluronic acid receptor (CD44) is expressed in bovine oocytes and early stage embryos. Theriogenology, 60, 1633-1644. doi: 10.1016/S0093-691X(03)00116-X.CrossrefGoogle Scholar

  • Gilula NB, Epstein ML, Beers WH (1978): Cell-to-cell communication and ovulation. A study of the cumulus-oocyte complex. Journal of Cell Biology, 78, 58-75. doi: 10.1083/ jcb.78.1.58.CrossrefGoogle Scholar

  • Han ZB, Lan CG, Wu YG, Han D, Feng WG, Wang JZ, Tan JH (2006): Interactive effect of granulosa cell apoptosis, follicle size, cumulus-oocyte complexes morphology, and cumulus expansion on the developmental competence of goat oocytes: a study using the well-in-drop culture system. Reproduction, 132, 749-758. doi: 10.1530/REP-06-0055.CrossrefGoogle Scholar

  • Hong JY, Yong HY, Lee BC, Hwange WS, Lim JM, Lee ES (2004): Effects of amino acids on maturation, fertilization and embryo development of pig follicular oocytes in two IVM media. Theriogenology, 62, 1473-1482. doi: 10.1016/j. theriogenology.2004.02.013.CrossrefPubMedGoogle Scholar

  • Iwata H, Hashimoto S, Ohota M, Kimura K, Shibano K, Miyake M (2004): Effects of follicle size and electrolytes and glucose in maturation medium on nuclear maturation and developmental competence of bovine oocytes. Reproduction, 121, 159-164. doi: 10.1530/rep.1.00084.CrossrefGoogle Scholar

  • Jardillier JC (1972): Hyaluronic acid in pleural fluid: value of method of colorimetric determination after selective precipitation. Annales de Biologie Clinique, 30, 439-443.PubMedGoogle Scholar

  • Jezova M, Scsukova S, Nagyova E, Vranova J, Prochazka R, Kolena J (2001): Effect of intraovarian factors on porcine follicular cells: cumulus expansion, granulosa and cumulus cells progesterone production. Animal Reproduction Science, 65, 115-126. doi: 10.1016/S0378-4320(00)00219-0.CrossrefGoogle Scholar

  • Johnsson H, Heldin P, Sedin G, Laurent TC (1997): Hyaluronan production in vitro by fetal lung fibroblasts and epithelial cells exposed to surfactants of N-acetylcysteine. Upsala Journal of Medical Sciences, 102, 199-209.PubMedCrossrefGoogle Scholar

  • Ju S, Rui R (2012): Effects of cumulus cells on in vitro maturation of oocytes and development of cloned embryos in the pig. Reproduction in Domestic Animals, 47, 521-529. doi: 10.1111/j.1439-0531.2011.01912.x.CrossrefGoogle Scholar

  • Kano K, Miyano T, Kato S (1998): Effects of glykosamino-glycans on the development of in vitro-matured and -fertilized porcine oocytes to the blastocyst stage in vitro. Biology of Reproduction, 58, 1226-1232. doi: 10.1095/ biolreprod58.5.1226.CrossrefGoogle Scholar

  • Karja NWK (2008): Nuclear maturation of porcine oocytes in vitro: effect of the cumulus-oocyte complexes quality. Indonesian Journal of Biotechnology, 13, 1078-1084.Google Scholar

  • Kimura N, Konno Y, Miyoshi K, Matsumoto H, Sato E (2002): Expression of hyaluronan synthases and CD44 messenger RNAs in porcine cumulus-oocyte complexes during in vitro maturation. Biology of Reproduction, 66, 707-717. doi: 10.1095/biolreprod66.3.707.CrossrefGoogle Scholar

  • Kongtawelert P, Ghosh P (1990): A method for the quantification of hyaluronan (hyaluronic acid) in biological fluids using a labeled avidin-biotin technique. Analytical Biochemistry, 185, 313-318.Google Scholar

  • Lago G, Oruna L, Cremata JA, Perez C, Coto G, Lauzan E, Kennedy JF (2005): Isolation, purification and characterization of hyaluronan from human umbilical cord residues. Carbohydrate Polymers, 62, 321-326. doi: 10.1016/j.carb-pol.2005.04.014.CrossrefGoogle Scholar

  • Liu Z, de Matos DG, Fan HY, Shimada M, Palmer S, Richards JS (2009): Interleukin-6: an autocrine regulator of the mouse cumulus cell-oocyte complex expansion process. Endocrinology, 150, 3360-3368. doi: 10.1210/en.2008-1532.CrossrefGoogle Scholar

  • Luciano AM, Lodde V, Beretta MS, Colleoni S, Lauria A, Modina S (2005): Developmental capability of denuded bovine oocyte in co-culture system with intact cumulus-oocyte complexes: role of cumulus cells, cyclic adenosine 3',5'-monophosphate, and glutathione. Molecular Reproduction and Development, 71, 389-397, doi: 10.1002/ mrd.20304.CrossrefGoogle Scholar

  • Machaty Z, Funahashi H, Day BN, Prather RS (1997): Developmental changes in the intracellular Ca2+ release mechanisms in porcine oocytes. Biology of Reproduction, 56, 921-930. doi: 10.1095/biolreprod56.4.921.CrossrefGoogle Scholar

  • Marchal R, Vigneron C, Perreau C, Bali-Papp A, Mermillod P (2002): Effect of folicular size on meiotic and developmental competence of porcine oocytes. Theriogenology, 57, 1523-1532. doi: 10.1016/S0093-691X(02)00655-6.CrossrefGoogle Scholar

  • Miyoshi K, Umezu M, Sato E (1999): Efect of hyaluronic acid on the development of porcine 1-cell embryos produced by a conventional or new in vitro maturation/fertilization system. Theriogenology, 51, 777-784. doi: 10.1016/S0093-691X(99)00026-6.CrossrefGoogle Scholar

  • Mizuno H, Iso N, Saito T, Ogawa H, Sawairi H, Saito M (1991): Characterization of hyaluronic acid of yellow-fin tuna eyeball. Nippon Suisan Gakkaishi, 57, 517-519.CrossrefGoogle Scholar

  • Moor RM, Smith MW, Dawson RMC (1980): Measurement of intercellular coupling between oocytes and cumulus cells using intracellular markers. Experimental Cell Research, 126, 15-29. doi: 10.1016/0014-4827(80)90466-8.CrossrefGoogle Scholar

  • Morbeck DE, Esbenshade KL, Flowers WL, Britt JH (1992): Kinetics of follicle growth in the prepubertal gilt. Biology of Reproduction, 47, 485-491. doi: 10.1095/biolreprod47.3.485.CrossrefGoogle Scholar

  • Morse BS, Nussbaum M (1967): Detection of hyaluronic acid in serum and urine of patient with nephroblastoma. American Journal of Medicine, 42, 996-1002. doi: 10.1016/0002-9343(67)90080-0.CrossrefGoogle Scholar

  • Moscatelli D, Rubin H (1974): Multiplication and hyaluronic-acid production in chick-embryo fibroblasts. Journal of Cell Biology, 63, A233-A233.Google Scholar

  • Motlik J, Fulka J (1976): Breakdown of germinal vesicle in pig oocytes in vivo and in vitro. Journal of Experimental Zoology, 198, 155-162. doi: 10.1002/jez.1401980205.CrossrefGoogle Scholar

  • Motlik J, Kubelka M (1990): Cell-cycle aspects of growth and maturation of mammalian oocytes. Molecular Reproduction and Development, 27, 366-375. doi: 10.1002/ mrd.1080270411.CrossrefGoogle Scholar

  • Motlik J, Prochazka R, Nagyova E, Schellander K, Brem G (1998a): Paracrine and autocrine regulation of cumulus expansion in porcine follicles. Reproduction in Domestic Animals, 33, 181-185. doi: 10.1111/j.1439-0531.1998. tb01340.x.CrossrefGoogle Scholar

  • Motlik J, Pavlok A, Kubelka M, Kalous J, Kalab P (1998b): Interplay between CDC2 kinase and MAP kinase pathway during maturation of mammalian oocytes. Theriogenology, 49, 461-469. doi: 10.1016/S0093-691X(97)00418-4.CrossrefGoogle Scholar

  • Murray Jr. R, Mayes PA, Rodwell VW, Granner DK (2003): Harper's illustrated biochemistry. 26th Ed. McGraw-Hill, New York.Google Scholar

  • Nagyova E (2012): Regulation of cumulus expansion and hyalu-ronan synthesis in porcine oocyte-cumulus complexes during in vitro maturation. Endocrine Regulations, 46, 225-235.CrossrefGoogle Scholar

  • Nagyova E, Prochazka R, Vanderhyden BC (1999): Oocy-tectomy does not influence synthesis of hyaluronic acid by pig cumulus cells: retention of hyaluronic acid after insulin-like growth factor-I treatment in serum-free medium. Biology of Reproduction, 61, 569-574. doi: 10.1095/ biolreprod61.3.569.CrossrefGoogle Scholar

  • Nagyová E, Vanderhyden B, Procházka R (2000): Secretion of paracrine factors enabling expansion of cumulus cells is developmentally regulated in pig oocytes. Biology of Reproduction, 63, 1149-1156. doi: 10.1095/biolreprod63.4.1149.CrossrefGoogle Scholar

  • Nagyova E, Camaioni A, Prochazka R, Salustri A (2004): Covalent transfer of heavy chains of inter-alpha-trypsin inhibitor family proteins to hyaluronan in in vivo and in vitro expanded porcine oocyte-cumulus complexes.PubMedGoogle Scholar

  • Biology of Reproduction, 71, 1838-1843. doi: 10.1095/ biolreprod.104.029595.CrossrefGoogle Scholar

  • Nagyova E, Scsukova S, Nemcova L, Mlynarikova A, Yi YJ, Sutovsky M, Sutovsky P (2012): Inhibition of proteasomal proteolysis affects expression of extracellular matrix components and steroidogenesis in porcine oocyte-cumulus complexes. Domestic Animal Endocrinology, 42, 50-62.Google Scholar

  • doi: 10.1016/j.domaniend.2011.09.003.CrossrefGoogle Scholar

  • Nakayama T, Inoue M, Sato E (1996): Effect of oocytectomy on glycosaminoglycan composition during cumulus expansion of porcine cumulus-oocyte complexes cultured in vitro. Biology of Reproduction, 55, 1299-1304. doi: 10.1095/ biolreprod55.6.1299.CrossrefGoogle Scholar

  • Nandi S, Kumar VG, Manjunatha BM, Gupta PS (2007): Biochemical composition of ovine follicular fluid in relation to the follicle size. Development, Growth and Differentiation, 49, 61-66. doi: 10.1111/j.1440-169x.2007.00901.x.CrossrefGoogle Scholar

  • Nemcova L., Nagyova E, Petlach M, Tomanek M, Prochazka R (2007): Molecular mechanisms of insulin-like growth factor 1 promoted synthesis and retention of hyaluronic acid in porcine oocyte-cumulus complexes. Biology of Reproduction, 76, 1016-1024. doi: 10.1095/biolreprod.106.057927.CrossrefGoogle Scholar

  • Nevoral J, Petr J, Gelaude A, Bodart JF, Kucerova-Chrpova V, Sedmikova M, Krejcova T, Kolbabova T, Dvorakova M, Vyskocilova A, Weingartova I, Krivohlavkova L, Zalmanova T, Jilek F (2014): Dual effect of hydrogen sulphide donor on meiosis and cumulus expansion of porcine cumulus-oocyte complexes. PLoS ONE, 9, e99613. doi:10.1371/journal. pone.0099613.CrossrefGoogle Scholar

  • Nyberg AMD, Engstrorm-Laurent A, Loof L (1988): Serum hya-luronate in primary biliary cirrhosis - a biochemical marker for progressive liver damage. Hepatology, 8, 142-146. doi: 10.1002/hep.1840080127.CrossrefGoogle Scholar

  • Pangas SA, Rademaker AW, Fishman DA, Woodruff TK (2002): Localization of the activin signal transduction components in normal human ovarian follicles: implications for autocrine and paracrine signaling in the ovary. Journal of Clinical Endocrinology and Metabolism, 87, 2644-2657.CrossrefGoogle Scholar

  • Parikh FR, Nadkarni SG, Naik NJ, Naik DJ, Uttamchandani SA (2006): Cumulus coculture and cumulus-aided embryo transfer increases pregnancy rates in patients undergoing in vitro fertilization. Fertility and Sterility, 86, 839-847. doi: 10.1016/j.fertnstert.2006.03.028.CrossrefGoogle Scholar

  • Phillips DM, Dekel N (1982): Effect of gonadotropins and prostaglandin on cumulus mucification in cultures of intact follicles. Journal of Experimental Zoology, 221, 275-282. doi: 10.1002/jez.1402210303.CrossrefGoogle Scholar

  • Procházka R, Nagyová E, Rimkevicová Z, Nagai T, Kikuchi K, Motlík J (1991): Lack of effect of oocytectomy on expansion of the porcine cumulus. Journal of Reproduction and Fertility, 93, 569-576.CrossrefGoogle Scholar

  • Prochazka R, Nagyova E, Brem G, Schellander K (1998): Secretion of cumulus expansion-enabling factor (CEEF) in porineGoogle Scholar

  • follicles. Molecular Reproduction and Development, 49, 141149. doi: 10.1002/(SICI)1098-2795(199802)49:2<141::AID-MRD5>3.0.CO;2-P.CrossrefGoogle Scholar

  • Procházka R, Srsen V, Nagyová E, Miyano T, Flechon JE (2000): Developmental regulation of effect of epidermal growth factor on porcine oocyte-cumulus complexes: nuclear maturation, expansion, and F-actin remodeling. Molecular Reproduction and Development, 56, 63-73. doi: 10.1002/ (SICI)1098-2795(200005)56:1<63::AID-MRD8>3.0.CO;2-D.CrossrefGoogle Scholar

  • Prosdocimi M, Bevilacqua C (2012): Exogenous hyaluronic acid and wound healing: an updated vision. Panminerva Medica, 54, 129-135.PubMedGoogle Scholar

  • Qian Y, Shi WQ, Ding JT, Sha JH, Fan BQ (2003): Predictive value of the area of expanded cumulus mass on development of porcine oocytes matured and fertilized in vitro. Journal of Reproduction and Development, 49, 167-174.CrossrefGoogle Scholar

  • Qian Y, Shi WQ, Ding JT, Liu JY, Sha JH, Fan BQ (2005): Effects of type and state of co-culture cells on in-vitro development of porcine oocytes matured and fertilized in vitro. Journal of Assisted Reproduction and Genetics, 22, 233-238. doi: 10.1007/s10815-005-5145-6.CrossrefGoogle Scholar

  • Racowsky C (1985): Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. Journal of Reproduction and Fertility, 74, 9-21.CrossrefGoogle Scholar

  • Rehakova M, Bakos D, Soldan M, Vizarova K (1994): De-polymerization reactions of hyaluronic acid in solution. International Journal of Biological Macromolecules, 16, 121-124. doi: 10.1016/0141-8130(94)90037-X.CrossrefGoogle Scholar

  • Salustri A, Yanagishita M, Hascall VC (1989): Synthesis and accumulation of hyaluronic acid and proteoglycans in the mouse cumulus cell-oocyte complex during follicle-stimulating hormone-induced mucification. Journal of Biological Chemistry, 264, 13840-13847.Google Scholar

  • Salustri A, Ulisse S, Yanagishita M, Hascall VC (1990): Hyaluronic acid synthesis by mural granulosa cells and cumulus cells in vitro is selectively stimulated by a factor produced by oocytes and by transforming growth factor-ß. The Journal of Biological Chemistry, 265, 19517-19523.Google Scholar

  • Salustri A, Garlanda C, Hirsch E, De Acetis M, Maccagno A, Bottazzi B, Doni A, Bastone A, Mantovani G, Peccoz PB, Salvatori G, Mahoney DJ, Day AJ, Siracusa G, Romani L, Mantovani A (2004): PTX3 plays a key role in the organization of the cumulus oophorus extracellular matrix and in in vivo fertilization. Development, 131, 1577-1586. doi: 10.1242/dev.01056.CrossrefGoogle Scholar

  • Sato E, Ishibashi T, Koide SS (1987): Prevention of spontaneous degeneration of mouse oocytes in culture by ovarian glycosaminoglycans. Biology of Reproduction, 37, 371-376. doi: 10.1095/biolreprod37.2.371.CrossrefGoogle Scholar

  • Schoenfelder M, Einspanier R (2003): Expression of hyaluro-nan synthases and corresponding hyaluronan receptors is differentially regulated during oocyte maturation in cattle.Google Scholar

  • Biology of Reproduction, 69, 269-277. doi: 10.1095/biol-reprod.102.011577.CrossrefGoogle Scholar

  • Schoevers EJ, Colenbrander B, Roelen BAJ (2007): Developmental stage of the oocyte during antral follicle growth and cumulus investment determines in vitro embryo development of sow oocytes. Theriogenology, 67, 1108-1122. doi: 10.1016/j.theriogenology.2006.12.009.PubMedCrossrefGoogle Scholar

  • Schuetz AW, Dubin NH (1981): Progesterone and prostaglandin secretion by ovulated rat cumulus cell-oocyte complexes. Endocrinology, 108, 457-463.Google Scholar

  • Shiedlin A, Bigelow R, Christopher W, Arbabi S, Yang L, Maier RV, Wainwright N, Childs A, Miller RJ (2004): Evaluation of hyaluronan from different sources: Streptococcus zooepidimi-cus, rooster combs, bovine vitreous, human umbilical cord. Biomacromolecules, 5, 2122-2127. doi: 10.1021/bm0498427.CrossrefGoogle Scholar

  • Shimada M, Terada T (2002): Role of cAMP in regulation of both MAP kinase and p34(cdc2) kinase activity during meiotic progression, especially beyond the MI stage. Molecular Reproduction and Development, 62, 124-131. doi: 10.1002/mrd.10075CrossrefGoogle Scholar

  • Singh B, Meng L, Rutledge JM, Armstrong DT (1997): Effect of epidermal growth factor and follicle stimulating hormone during in vitro maturation on cytoplasmic maturation of porcine oocytes. Molecular Reproduction and Development, 46, 401-407.CrossrefGoogle Scholar

  • Smelcova M, Tichovska H (2011): Gasotransmitters in the reproductive system: a review. Scientia Agriculturae Bohemica, 42, 188-198.Google Scholar

  • Solursh M (1976): Glycosaminoglycan synthesis in the chick gastrula. Developmental Biology, 50, 525-530. doi: 10.1016/0012-1606(76)90171-8.CrossrefPubMedGoogle Scholar

  • Stern R, Jedrzejas MJ (2006): Hyaluronidases: their genomics, structures, and mechanisms of action. Chemical Reviews, 106, 818-839. doi: 10.1021/cr050247k.PubMedCrossrefGoogle Scholar

  • Sutovsky P, Flechon JE, Pavlok A (1994): Microfilaments, microtubules and intermediate filaments fulfil differential roles during gonadotropin-induced expansion of bovine cumulus oophorus. Reproduction Nutrition Development, 34, 415-425. doi: 10.1051/rnd:19940503.CrossrefGoogle Scholar

  • Swann DA, Radin EL, Nazimiec M, Weisser PA, Curran N, Lewinnek G (1974): Role of hyaluronic acid in joint lubrication. Annals of the Rheumatic Diseases, 33, 318-326. doi: 10.1136/ard.33.4.318.CrossrefGoogle Scholar

  • Talbot P, Dandekar P (2003): Perivitelline space: does it play a role in blocking polyspermy in mammals? Microscopy Research and Technique, 61, 349-357. doi: 10.1002/jemt.10348.CrossrefGoogle Scholar

  • Tao Y, Xie H, Hong H, Chen X, Jang J, Xia G (2005): Effects of nitric oxide synthase inhibitors on porcine oocyte meiotic maturation. Zygote, 13, 1-9. doi: 10.1017/ S0967199404002953.CrossrefPubMedGoogle Scholar

  • Tatemoto H, Terada T (1998): Involvement of cumulus cells stimulated by FSH in chromatin condensation and the activation of maturation promoting factor in bovine oocytes.PubMedGoogle Scholar

  • Theriogenology, 49, 1007-1020. doi: 10.1016/S0093-691X(98)00049-1.CrossrefGoogle Scholar

  • Tesarík J, Kopecný V (1986): Late preovulatory synthesis of proteoglycans by the human oocyte and cumulus cells and their secretion into the oocyte-cumulus-complex extracellular matrices. Histochemistry, 85, 523-528. doi: 10.1007/ BF00508435.CrossrefGoogle Scholar

  • Tirone E, Siracusa G, Hascall VC, Frajese G, Salustri A (1993): Oocytes preserve the ability of mouse cumulus cells in culture to synthesize hyaluronic acid and dermatan sulfate. Developmental Biology, 160, 405-412. doi: 10.1006/ dbio.1993.1316.CrossrefGoogle Scholar

  • Tornell J, Brannstorm M, Hillensjo T (1984): Different effects of cyclic-nucleotide derivates upon the rat oocyte-cumulus complex in vitro. Acta Physiologica Scandinavica, 122, 507-513. doi: 10.1111/j.1748-1716.1984.tb07539.x.CrossrefGoogle Scholar

  • Tornell J, Billig H, Hillensjo T (1990): Resumption of rat oocyte meiosis is paralleled by a decrease in guanosine 3',5'-cyclic-monophosphate (cGMP) and is inhibited by microinjection of cGMP. Acta Physiologica Scandinavica, 139, 511-517. doi: 10.1111/j.1748-1716.1990.tb08953.x.CrossrefGoogle Scholar

  • Toyokawa K, Harayama H, Miyake M (2005): Exogenous hyalu-ronic acid enhances porcine parthenogenetic embryo development in vitro possibly mediated by CD44. Theriogenology, 64, 378-392. doi: 10.1016/j.theriogenology.2004.12.005.CrossrefGoogle Scholar

  • Ueno S, Yoshida N, Niimura S (2009): Amount of hyaluronan produced by mouse oocytes and role of hyaluronan in enlargement of the perivitelline space. Journal of Reproduction and Development, 55, 496-501.CrossrefGoogle Scholar

  • Uhm SJ, Chung HM, Seung KR, Kim NH, Lee HT, Chung KS (1998): Interactive effect of epidermal growth factor, transforming growth factor beta and gonadotropin in in vitro maturation of porcine oocytes. Theriogenology, 49, 319-319. doi: 10.1016/S0093-691X(98)90672-0.CrossrefGoogle Scholar

  • Vabres P (2010): Hyaluronan, embryogenesis and morphogenesis. Annales de Dermatologie et de Vénéréologie, 137, S9-S14.Google Scholar

  • Vanderhyden BC (1993): Species differences in the regulation of cumulus expansion by an oocyte-secreted factor(s). Journal of Reproduction and Fertility, 98, 219-227.CrossrefGoogle Scholar

  • Vanderhyden BC, MacDonald EA, Nagyova E, Dhawan A (2003): Evaluation of members of the TFGß superfamily as candidates for the oocyte factors that control mouse cumulus expansion and steroidogenesis. Reproduction (Cambridge, England) Supplement, 61, 55-70.Google Scholar

  • Varani S, Elvin JA, Yan C, DeMayo J, DeMayo FJ, Horton HF, Byrne MC, Matzuk MM (2002): Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. Molecular Endocrinology, 16, 1154-1167. doi: 10.1210/me.16.6.1154.Google Scholar

  • Varnosfaderani SHR, Ostadhosseini S, Haijan M, Hosseini SM, Khashouei EA, Abbasi H, Hosseinnia P, Nasr-Esfahani MH (2013): Importance of the GDF9 signaling pathway on cumulus cells expansion and oocyte competency in sheep. Theriogenology, 15, 470-478. doi: 10.1016/j.theriogenol-ogy.2013.05.009.CrossrefGoogle Scholar

  • Volpi N (2000): Hyaluronic acid and chondroitin sulfate un-saturated disaccharides analysis by high-performance liquid chromatography and fluorimetric detection with dansylhy-drazine. Analytical Biochemistry, 277, 19-24. doi: 10.1006/ abio.1999.4366.CrossrefGoogle Scholar

  • Wang Y, Liang N, Yao G, Tian H, Zhai Y, Yin Y, Sun F (2014): Knockdown of TrkA in cumulus oocyte complexes (COCs) inhibits EGF-induced cumulus expansion by down-regulation of IL-6. Melucular and Cellular Endocrinology, 382, 804-813. doi: 10.1016/j.mce.2013.10.031.CrossrefGoogle Scholar

  • Wassarman PM (1988): The mammalian ovum. In: Knobil E, Neill J (eds): The physiology of reproduction. Raven Press, New York, 69-102.Google Scholar

  • Yanagimachi R (1988): Mammalian fertilization. In: Knobil E, Neill J (eds): The physiology of reproduction. Raven Press, New York, 230-278.Google Scholar

  • Yang LS, Kadam AL, Koide SS (1993): Identification of a cAMP-dependent protein kinase in bovine and human follicular fluids. Biochemistry and Molecular Biology International, 31, 521-525.Google Scholar

  • Yao G, Liang M, Liang N, Yin M, Lu M, Lian J, Wang Y, Sun F (2014): MicroRNA-224 is involved in the regulation of mouse cumulus expansion by targeting Ptx3. Molecular and Cellular Endocrinology, 382, 244-253. doi: 10.1016/j. mce.2013.10.014.CrossrefGoogle Scholar

  • Yi YJ, Nagyova E, Manandhar G, Prochazka R, Sutovsky M, Parks CS, Sutovsky P (2008): Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle break-down, and cumulus expansion of porcine cu-mulus-oocyte complexes matured in vitro. Biology of Reproduction, 78, 115-126. doi: 10.1095/biolreprod.107.061366.CrossrefGoogle Scholar

  • Yokoo M, Miyahayashi Y, Naganuma T, Kimura N, Sasada H (2002): Identification of hyaluronic acid-binding proteins and their expression in porcine cumulus-oocyte complexes during in vitro maturation. Biology of Reproduction, 67, 1165-1171. doi: 10.1095/biolreprod.102.004903.CrossrefGoogle Scholar

  • Yokoo M, Nagahara T, Kimura N, Shimizu T, Matsumoto H, Sasada H, Sato E (2003): Hyaluronan-CD44 system during cumulus expansion induces oocyte maturation in pig. Biology of Reproduction, 68, 325-326.Google Scholar

  • Yokoo M, Shimizu T, Kimura N, Tunjung WAS, Matsumoto H, Abe H, Sasada H, Rodriguez-Martinez H, Sato E (2007): Role of the hyaluronan receptor CD44 during porcine oocyte maturation. Journal of Reproduction and Development, 53, 263-270. doi: 10.1262/jrd.18047.CrossrefGoogle Scholar

  • Yokoo M, Kimura N, Sato E (2010): Induction of oocyte maturation by hyaluronan-CD44 interaction in pigs. Journal of Reproduction and Development, 56, 15-19.CrossrefGoogle Scholar

  • Yoshida M, Ishizaki Y, Kawagishi H, Bamba K, Kojima Y (1992): Effect of pig follicular fluid on maturation of pigPubMedGoogle Scholar

  • oocytes in vitro and on their subsequent fertilizing and developmental capacity in vitro. Journal of Reproduction and Fertility, 95, 481-488.Google Scholar

  • expansion and secretion of cumulus expansion-enabling factor (CEEF) in goat follicles. Molecular Reproduction and Development, 75, 1387-1395. doi: 10.1002/mrd.20881.CrossrefGoogle Scholar

  • Zhang X, Han YB, Sui HS, Miao DQ, Wang JZ, Li KL, Tan JH (2008): Developmental and hormonal regulation of cumulusPubMedGoogle Scholar

About the article

Received: 2014-06-06

Accepted: 2014-09-13

Published Online: 2015-01-29

Citation Information: Scientia Agriculturae Bohemica, Volume 45, Issue 4, Pages 212–225, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.1515/sab-2015-0002.

Export Citation

© 2014 J. Nevoral et. al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Tao Lin, Reza K. Oqani, Jae Eun Lee, Jeong Won Kang, So Yeon Kim, Eun Seok Cho, Yong Dae Jeong, Jun Jong Baek, and Dong Il Jin
Reproductive Toxicology, 2017
Sara Hosseini, Maryam Dehghani-Mohammadabadi, Marefat Ghafarri Novin, Mostafa Haji Molla Hoseini, Ehsan Arefian, Samira Mohammadi Yeganeh, and Mohammad Salehi
American Journal of Reproductive Immunology, 2017, Page e12720

Comments (0)

Please log in or register to comment.
Log in