Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year


CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
Online
ISSN
1805-9430
See all formats and pricing
More options …

Tangent Curve Function Description of Mechanical Behaviour of Bulk Oilseeds: A Review

R. Sigalingging
  • Corresponding author
  • Czech University of Life Sciences Prague, Faculty of Engineering, Department of Mechanical Engineering, Prague, Czech Republic
  • University of Sumatera Utara, Faculty of Agriculture, Department of Agricultural Engineering, Medan, Indonesia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Herák
  • Czech University of Life Sciences Prague, Faculty of Engineering, Department of Mechanical Engineering, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Kabutey
  • Czech University of Life Sciences Prague, Faculty of Engineering, Department of Mechanical Engineering, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Čestmír
  • Czech University of Life Sciences Prague, Faculty of Engineering, Department of Mechanical Engineering, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Divišová
  • Czech University of Life Sciences Prague, Faculty of Engineering, Department of Mechanical Engineering, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-29 | DOI: https://doi.org/10.1515/sab-2015-0007

Abstract

The application of tangent curve mathematical model for description of mechanical behaviour of selected bulk oilseeds, namely jatropha, sunflower, rape, garden pea, and common bean in linear compression was reviewed. Based on the review analysis, the tangent curve function has been developed using MathCAD 14 software which employs the Levenberg-Marquardt algorithm for data fitting optimal for tangent curve approximation. Linear compression parameters including force (N), deformation (mm), energy (J), and/or volume energy (J-m-3) can equally be determined by the tangent model. Additionally, the theoretical dependency between force and deformation characteristic curves can be defined by the force coefficient of mechanical behaviour (N) and deformation coefficient of mechanical behaviour (mm-1) of the tangent model. In conclusion, the review results, however, shows that the tangent curve mathematical model which is dependent on experimental boundary conditions is potentialy useful for theoretical description of mechanical properties and deformation characteristics of bulk oilseeds in axial compression.

Keywords: mathematical model; MathCAD 14 software; force-deformation characteristic; force coefficient; deformation coefficient

References

  • Beerens P (2007): Screw-pressing of Jatropha seeds for fueling purposes in less developed countries. Dissertation, Eindhoven University of Technology.Google Scholar

  • Divišová M, Herák D, Kabutey A, Šleger V, Sigalingging R, Svatoňová T (2014): Deformation curve characteristics of rapeseeds and sunflower seeds under compression loading. Scientia Agriculturae Bohemica, 45(3), 180-186. doi: 10.2478/sab-2014-0106.CrossrefGoogle Scholar

  • Gupta RK, Das SK (2000): Fracture resistance of sunflower seed and kernel to compressive loading. Journal of Food Engineering, 46, 1-8. doi: 10.1016/S0260-8774(00)00061-3.CrossrefGoogle Scholar

  • Grzegorz L (2007): Fracture toughness of pea: Weibull analysis. Journal of Food Engineering, 83, 436-443.CrossrefGoogle Scholar

  • Herák D, Gurdil G, Sedlacek A, Dajbych O, Simanjuntak S (2010): Energy demands for pressing Jatropha curcas L. seeds. Biosystems Engineering, 106, 527-534. doi: 10.1016/j. biosystemseng.2010.06.002.CrossrefWeb of ScienceGoogle Scholar

  • Herák D, Kabutey A, Sedláček A, Gürdil G (2011a): Tangent curve utilization for description of mechanical behaviour of pressed mixture. Research in Agricultural Engineering, 57, 13-18.Google Scholar

  • Herák D, Kabutey A, Sedláček A (2011b): Mathematical description of rapeseeds (Brassica napus L.) mixture mechanical behavior under compression loading. Scientia Agriculturae Bohemica, 42, 31-36.Google Scholar

  • Herák D, Kabutey A, Sedláček A, Gürdil G (2012a): Mechanical behaviour of several layers of selected plant seeds under compression loading. Research in Agricultural Engineering, 58, 24-29.Google Scholar

  • Herák D, Kabutey A, Divisova M, Svatonova T (2012b): Comparison of the mechanical behaviour of selected oilseeds under compression loading. Notulae Botanicae Horti Agro-botanici Cluj-Napoca, 40, 227-232.Google Scholar

  • Herák D, Kabutey A, Divisova M, Simanjuntak S (2013a): Mathematical model of mechanical behaviour of Jatropha curcas L. seeds under compression loading. Biosystems Engineering, 114, 279-288. doi: 10.1016/j.biosystemseng.2012.12.007.Web of ScienceCrossrefGoogle Scholar

  • Herák D, Kabutey A, Hrabe P (2013b): Oil point determination of Jatropha curcas L. bulk seeds under compression loading. Biosystems Engineering, 116, 470-477. doi.org/10.1016/j. biosystemseng.2013.10.006CrossrefWeb of ScienceGoogle Scholar

  • Herák D, Blahovec J, Kabutey A (2014): Analysis of the axial pressing of bulk Jatropha curcas L. seeds using reciprocal slope transformation. Biosystems Engineering, 121, 67-76. doi: 10.1016/j.biosystemseng.2014.02.009.Web of ScienceCrossrefGoogle Scholar

  • Izli N, Unal H, Sincik M (2009): Physical and mechanical properties of rapeseed at different moisture content. International Agrophysics, 23, 137-145.Google Scholar

  • Kabutey A, Herak D, Hanus J (2010): Screw press performance for oil extraction from Jatropha curcas L. seeds of different moisture content. Scientia Agriculturae Bohemica, 41, 225-230.Google Scholar

  • Kabutey A, Herák D, Sedláček A (2011): Behaviour of different moisture content of Jatropha curcas seeds under compression loading. Research in Agricultural Engineering, 2, 72-77.Google Scholar

  • Kabutey A, Herák D, Chotěborský R, Navrátilová M (2012a): Model for energy and deformation determination of selected oilseeds under compression loading - Short communication. Research in Agricultural Engineering, 58 (4): 155-158.Google Scholar

  • Kabutey A, Sedláček A, Divišová M, Svatoňová T (2012b): Heat treatment temperature of Jatropha curcas L. seeds under compression loading. Scientia Agriculturae Bohemica, 43, 116-121.Google Scholar

  • Kabutey A, Divišova M, Sedláček L, W.E. Boatri, Svatoňová T, Sigalingging R (2012c): Mechanical behaviour of oil palm kernels (Elaeis guineensis). Scientia Agriculturae Bohemica, 44, 18-22. doi: 10.7160/sab.2013.440104CrossrefGoogle Scholar

  • Kabutey A, Herak D, Chotěborský R, Dajbych O, Divišova M, Boatri WE (2013): Linear pressing analysis of Jatropha curcas L. seeds using different pressing vessel diameters and seed pressing heights. Biosystems Engineering, 115, 43-49. doi:10.1016/j.biosystemseng.2012.12.016.CrossrefWeb of ScienceGoogle Scholar

  • Kabutey A, Herák D, Dajbych O, Divišová M, Boatri W. E, Sigalingging R (2014): Deformation energy of Jatropha curcas L seeds under compression loading. Research in Agricultural Engineering, 60, 68-74.Google Scholar

  • Karaj S, Müller J (2009): Optimization of mechanical extraction of Jatropha curcas L. seeds. Focus Cropping and Machinery, Landtechnik, 64, 164-167.Google Scholar

  • Karaj S, Müller J (2010): Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas L. Industrial Crops and Products, 32, 129-138. doi: 10.1016/j.indcrop.2010.04.001.CrossrefGoogle Scholar

  • Karaj S, Huaitalla RM, Müller J (2008): Physical, mechanical and chemical properties of Jatropha curcas L. seeds and kernels. In: Proc. Conference on International Agricultural Research for Development, Stuttgart, Germany, 1-7.Google Scholar

  • Kibar H, Ozturk T (2008): Physical and mechanical properties of soybean. International Agrophysics, 22, 239-244.Google Scholar

  • Marquardt DW (1963): An algorithm for the least-squares estimation of nonlinear parameters, SIAM. Journal of Applied Mathematics, 11, 431-441.Google Scholar

  • Mrema, G. C, Mc Nulty, P. B (1985): Mathematical model of mechanical oil expression from oilseeds. Journal of Agricultural Engineering Research, 31(4), 361-370.CrossrefGoogle Scholar

  • Petrů M, Novák O, Herák D, Simanjuntak S (2012): Finite element method model of the mechanical behaviour of Jatropha curcas L. seed under compression loading. Biosystems Engineering, 111, 412-421. doi: 10.1016/j.biosys-temseng.2012.01.008.Web of ScienceCrossrefGoogle Scholar

  • Pritchard PJ (1998): Mathcad: A tool for engineering problem solving. McGraw-Hill Science Engineering, New York.Google Scholar

  • Sirisomboon P, Kitchaiya P, Pholpho T, Mahuttanyavanitch T (2007): Physical and mechanical properties of Jatropha curcas L. fruits, nuts and kernels. Biosystems Engineering, 97, 201-207. doi: 10.1016/j.biosystemseng.2007.02.011.CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-01-14

Accepted: 2014-04-08

Published Online: 2015-01-29


Citation Information: Scientia Agriculturae Bohemica, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.1515/sab-2015-0007.

Export Citation

© 2014 R. Sigalingging et. al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in