Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year

CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
See all formats and pricing
More options …

Back In Time: Fish Oocyte As A Superior Model For Human Reproduction? A Review *

I. Weingartová
  • Corresponding author
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Dvořáková
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Nevoral
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Vyskočilová
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Sedmíková
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Rylková
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Zoology and Fisheries, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. Kalous
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Zoology and Fisheries, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F. Jílek
  • Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-04 | DOI: https://doi.org/10.1515/sab-2015-0011


The progress of reproductive biotechnology is dependent on the amount, quality, and availability of female gametes – oocytes. The proper selection of a suitable model organism is vital to ensure effective research of the signal pathways that regulate oogenesis and meiotic maturation. Many factors are involved in meiosis regulation and some of them are evolutionarily conserved. Xenopus laevis is a traditional model for cell cycle research, which has become a background for a more detailed study of models that are similar to humans. In contrast to mammalian models, water-living vertebrates are appropriate models for studying effects of environmentally occurring pollutants such as endocrine-disrupting chemicals (EDCs). The triploid gynogenetic Prussian carp is a unique biological model for reproduction studies. The ability of clone production in combination with alternative sexual mode of reproduction brings advantages for the testing of sensitiveness to the effects of EDCs in terms of studying the alternative molecular pathways in meiosis regulations. The aim of this review is to compare meiosis regulating pathways among various animal models, and to suggest the possible utilization of these models in researching EDCs. A comparison of the currently recognized oocyte signalization and the endocrine disruptor effect points out the need for their molecular target identification and introduces some in water living vertebrates as suitable study models.

Key words: meiotic maturation; oocyte; Xenopus; pig; mouse; Carassius; biological model


  • Abrieu A, Dorée M, Fisher D (2001): The interplay between cyclin-B–Cdc2 kinase (MPF) and MAP kinase during maturation of oocytes. Journal of Cell Science, 114, 257–267.Google Scholar

  • Anger M, Klima J, Kubelka M, Prochazka R, Motlik J, Schultz RM (2004): Timing of Plk1 and MPF activation during porcine oocyte maturation. Molecular Reproduction and Development, 69, 11–16. doi: 10.1002/mrd.20151.Google Scholar

  • Araki K, Naito K, Haraguchi S, Suzuki R, Yokoyama M, Inoue M, Aizawa S, Toyoda Y, Sato E (1996): Meiotic abnormalities of c-mos knockout mouse oocytes: activation after first meiosis or entrance into third meiotic metaphase. Biology of Reproduction, 55, 1315–1324. doi: 10.1095/biolreprod55.6.1315.CrossrefGoogle Scholar

  • Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S (2013): Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. American Journal of Physiology, Endocrinology and Metabolism, 304, 599–613. doi: 10.1152/ajpendo.00469.2012.CrossrefGoogle Scholar

  • Blumer KJ, Johnson GJ. (1994): Diversity in function and regulation of MAP kinase pathways. Trend in Biochemical Sciences, 19, 236–240. doi: 10.1016/0968-0004(94)90147-3.CrossrefGoogle Scholar

  • Browne CL, Wiley HS, Dumont JN (1979): Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability. Science, 203, 182–183. doi: 10.1126/science.569364.CrossrefGoogle Scholar

  • Can A, Semiz O, Cinar O (2005): Bisphenol-A induces cell cycle delay and alters centrosome and spindle microtubular organization in oocytes during meiosis. Molecular Human Reproduction, 11, 389–396. doi: 10.1093/molehr/gah179.PubMedCrossrefGoogle Scholar

  • Caserta D, Di Segni N, Mallozzi M, Giovanale V, Mantovani A, Marci R, Moscarini M (2014): Bisphenol A and the female reproductive tract: an overview of recent laboratory evidence and epidemiological studies. Reproductive Biology and Endocrinology, 9, 12–37. doi: 10.1186/1477-7827-12-37.CrossrefGoogle Scholar

  • Chao HH, Zhang XF, Chen B, Pan B, Zhang LJ, Li L, Sun XF, Shi QH, Shen W (2012): Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochemistry and Cell Biology, 137, 249–259. doi: 10.1007/s00418-011-0894-z.CrossrefGoogle Scholar

  • Chen J, Hudson E, Chi MM, Chang AS, Moley KH, Hardie DG, Downs SM (2006): AMPK regulation of mouse oocyte meiotic resumption in vitro. Developmental Biology, 29, 227–238. doi: 10.1016/j.ydbio.2005.11.039.CrossrefGoogle Scholar

  • Chen J, Chi MM, Moley KH, Downs SM (2009): cAMP pulsing of denuded mouse oocytes incerases meiotic resumption via activation of AMP-activated protein kinase. Reproduction, 138, 759–770. doi: 10.1530/REP-08-0535.CrossrefGoogle Scholar

  • Chmelíková E, Jeseta M, Sedmíková M, Petr J, Tůmová L, Kott T, Lipovová P, Jílek F (2010): Nitric oxide synthase isoforms and the effect of their inhibition on meiotic maturation of porcine oocytes. Zygote, 18, 235–244. doi: 10.1017/S0967199409990268.CrossrefPubMedGoogle Scholar

  • Colborn T (2004): Commentary: setting aside tradition when dealing with endocrine disruptors. ILAR Journal, 45, 394–400. doi: 10.1093/ilar.45.4.394.CrossrefGoogle Scholar

  • Dekel N (1988): Regulation of oocyte maturation. The role of cAMP. Annals of the New York Academy of Sciences, 541, 211–216. doi: 10.1111/j.1749-6632.1988.tb22258.x.CrossrefGoogle Scholar

  • Dekel N, Beers WH (1978): Rat oocyte maturation in vitro: Rrelief of cyclic AMP inhibition by gonadotropins. Proceedings of the National Academy of Sciences of the United States of America, 75, 4369–4373. doi: 10.1073/pnas.75.9.4369.CrossrefGoogle Scholar

  • Dekel N, Lawrence TS, Gilula NB, Beers WH (1981) Modulation of cell-to-cell communication in the cumulus–oocyte complex and the regulation of oocyte maturation by LH. Developmental Biology, 86, 356–362. doi: 10.1016/0012-1606(81)90193-7.CrossrefPubMedGoogle Scholar

  • Dumont JN (1972): Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. Journal of Morphology. 136, 153–179.Google Scholar

  • Edry I, Sela-Abramovich S, Dekel N (2006): Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle. Molecular and Cellular Endocrinology, 252, 102–106. doi: 10.1016/k.mce.2006.03.009.CrossrefGoogle Scholar

  • Erikson RL (1991): Structure, expression, and regulation of protein kinases involved in the phosphorylation of ribosomal protein-S6. Journal of Biological Chemistry, 266, 6007–6010.Google Scholar

  • Fan HY, Sun QY (2004): Involvement of mitogen-activated protein kinase cascade during oocyte maturation and fertilization in mammals. Biology of Reproduction, 70, 535–547. doi: 10.1095/biolreprod.103.022830.CrossrefGoogle Scholar

  • Fan HY, Tong C, Chen DY, Sun QY (2002a): Protein kinases involved in the meiotic maturation and fertilization of oocyte. Acta Biochimica et Biophysica Sinica, 34, 259–265.Google Scholar

  • Fan HY, Tong C, Chen DY, Sun QY (2002b): Roles of MAP kinase signaling pathway in oocyte meiosis. Chinese Science Bulletin, 47, 1157–1162. doi: 10.1007/BF02907599.CrossrefGoogle Scholar

  • Fan HY, Huo LJ, Meng XQ, Zhong ZS, Hou Y, Chen DY, Sun QY (2003): Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biology of Reproduction, 69, 1552–1564. doi: 10.1095/biolreprod.103.015685.CrossrefGoogle Scholar

  • Fukui Y, Fukushima M, Terawaki Y, Ono H (1982): Effect of gonadotropins, steroids and culture media on bovine oocyte maturation in vitro. Theriogenology, 18, 161–175. doi: 10.1016/0093-691X(82)90100-5.CrossrefGoogle Scholar

  • Fulka Jr. J, Motlik J, Fulka J, Crozet N (1985): Inhibition of nuclear maturation in fully grown porcine and mouse oocytes after their fusion with growing porcine oocytes. Journal of Experimental Zoology, 235, 255–259. doi: 10.1002/jez.1402350212.CrossrefGoogle Scholar

  • Funahashi H, Cantley T, Day BN (1994): Different hormonal requirements of pig oocyte-cumulus complexes during maturation in vitro. Journal of Reproduction and Fertility, 101, 159–165. doi: 10.1530/jrf.0.1010159.CrossrefGoogle Scholar

  • Glotzer M, Murray AW, Kirschner MW (1991): Cyclin is degraded by the ubiquitin pathway. Nature, 349, 132–138. doi: 10.1038/349132a0.CrossrefGoogle Scholar

  • Golovko O, Kumar V, Fedorova G, Randak T, Grabic R (2014): Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere, 111, 418–426. doi:10.1016/j.chemosphere.2014.03.132.CrossrefGoogle Scholar

  • Golshan M, Hatef A, Zare A, Socha M, Milla S, Gosiewski G, Fontaine P, Sokołowska-Mikołajczyk M, Habibi HR, Alavi SM (2014): Alternations in neuroendocrine and endocrine regulation of reproduction in male goldfish (Carassius auratus) following an acute and chronic exposure to vinclozolin, in vivo. Aquatic Toxicology, 155, 73–83. doi: 10.1016/j.aquatox.2014.06.004.CrossrefGoogle Scholar

  • Gui J, Zhou L (2010): Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Science China Life Sciences, 53, 409–415. doi: 10.1007/s11427-010-0092-6.CrossrefGoogle Scholar

  • Hampl A, Eppig JJ (1995): Analysis of the mechanism(s) of metaphase-I arrest in maturing mouse oocytes. Development, 121, 925–933.PubMedGoogle Scholar

  • Han SJ, Conti M (2006): New pathways from PKA to the Cdc2/cyclin B complex in oocytes – Wee1B as a potential PKA substrate. Cell Cycle, 5, 227–231. doi: 10.4161/cc.5.3.2395.CrossrefGoogle Scholar

  • Han SJ, Vaccari S, Nedachi T, Andersen CB, Kovacina KS, Roth RA, Conti M (2006): Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO Journal, 25, 5716–5725. doi: 10.1038/sj.emboj.7601431.CrossrefGoogle Scholar

  • Holbech H, Kinnberg K, Petersen GI, Jackson P, Hylland K, Norrgren L, Bjerregaard P (2006): Detection of endocrine disrupters: evaluation of a Fish Sexual Development Test (FSDT). Comparative Biochemistry and Physiology, 144, 57–66. doi: 10.1016/j.cbpc.2006.05.006.CrossrefGoogle Scholar

  • Horner K, Livera G, Hinckley M, Trinh K, Storm D, Conti M (2003): Rodent oocytes express an active adenylyl cyclase required for meiotic arrest. Developmental Biology, 258, 385–396. doi: 10.1016/S0012-1606(03)00134-9.CrossrefGoogle Scholar

  • Huang Y, Wang X, Zhang J, Wu K (2014): Impact of endocrine-disrupting chemicals on reproductive function in zebrafish (Danio rerio). Reproduction in Domestic Animals, 50, 1–6. doi: 10.1111/rda.12468.CrossrefGoogle Scholar

  • Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, Thomas S, Thomas BF, Hassold TJ (2003): Bisphenol A exposure causes meiotic aneuploidy in the female mouse. Current Biology, 13, 546–553. doi: 10.1016/S0960-9822(03)00189-1.CrossrefGoogle Scholar

  • Inoue M, Naito K, Aoki F, Tayoda Y, Sato E (1995): Activation of mitogen-activated protein-kinase during meiotic maturation in porcine oocytes. Zygote, 3, 265–271. 10.1017/S0967199400002665.PubMedGoogle Scholar

  • Inoue M, Naito K, Nakayama T, Sato E (1998): Mitogen-activated protein kinase translocates into the germinal vesicle and induces germinal vesicle breakdown in porcine oocytes. Biology of Reproduction, 58, 130–136. doi: 10.1095/biolreprod58.1.130.CrossrefGoogle Scholar

  • Izumi T, Maller JL (1991): Phosphorylation of Xenopus cyclins B1 and B2 is not required for cell cycle transitions. Mollecular and Cellular Biology, 11, 3860–3867.Google Scholar

  • Jablonka-Shariff A, Olson LM (2000): Nitric oxide is essential for optimal meiotic maturation of murine cumulus–oocyte complexes in vitro. Molecular Reproduction and Development, 55, 412–421. doi: 10.1002/(SICI)1098-2795(200004)55:4%3C412::AID-MRD9%3E3.0.CO;2-W.CrossrefGoogle Scholar

  • Jung T, Moor RM, Fulka J (1993): Kinetics of MPF and Histone H1 kinase-activity differ during the G2-phase to M-phase transition in mouse oocytes. International Journal of Developmental Biology, 37, 595–600.Google Scholar

  • Kajiura-Kobayashi H, Yoshida N, Sagata N, Yamashita M, Nagahama, Y (2000). The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. Development genes and evolution, 210(8-9), 416-425. Doi: 10.1007/s004270000083.CrossrefGoogle Scholar

  • Kalous J, Kubelka M, Solc P, Susor A, Motlík J (2009): AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes. Reproduction, 138, 645–654. doi: 10.1530/REP-08-0461.PubMedCrossrefGoogle Scholar

  • Kalous L, Knytl M (2011): Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actinopterygii). Folia Zoologica, 60, 115–121.Google Scholar

  • Kalous L, Rylková K, Bohlen J, Šanda R, Petrtýl M (2013): New mtDNA data reveal a wide distribution of the Japanese ginbuna Carassius langsdorfii in Europe. Journal of Fish Biology, 82, 703–707. doi: 10.1111/j.1095-8649.2012.03492.x.CrossrefGoogle Scholar

  • Karaïskou A, Cayla X, Haccard O, Jessus C, Ozon R (1998): MPF amplification in Xenopus oocyte extracts depends on a two-step activation of Cdc25 phosphatase. Experimental Cell Research, 244, 491–500. doi: 10.1006/excr.1998.4220.CrossrefGoogle Scholar

  • Katsu Y, Yamashita M, Kajiura H, Nagahama Y (1993): Behavior of the components of maturation-promoting factor, cdc2 kinase and cyclin B, during oocyte maturation of goldfish. Developmental Biology, 160, 99–107. doi: 10.1006/dbio.1993.1289.CrossrefGoogle Scholar

  • Kay BK, Peng HB (1991): Xenopus laevis: practical uses in cell and molecular biology. Methods in Cell Biology, Academic Press, Toronto, Canada. 36, 45-50.Google Scholar

  • Khan PP, Maitra S (2013): Participation of cAMP-dependent protein kinase and MAP kinase pathways during Anabas testudineus oocyte maturation. General and comparative endocrinology, 181, 88–97. doi: 10.1016/j.ygcen.2012.10.016.CrossrefGoogle Scholar

  • Kinch CD, Ibhazehiebo K, Jeong JH, Habibi HR, Kurrasch DM (2015): Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 112, 1475–1480. doi: 10.1073/pnas.1417731112.CrossrefGoogle Scholar

  • Kishimoto T (2003): Cell-cycle control during meiotic maturation. Current Opinion in Cell Biology, 15, 654–663. doi: 10.1016/j.ceb.2003.10.010.CrossrefGoogle Scholar

  • Knytl M, Kalous L, Symonová R, Rylková K, Ráb P (2013): Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenetic and Genome Research, 139, 276–283. doi: 10.1159/000350689.CrossrefGoogle Scholar

  • Kobayashi H, Yoshida N, Sagata N, Yamashita M, Nagahama Y (2000): The Mos/MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. Development Genes and Evolution, 210, 416–425. doi: 10.1007/s004270000083.CrossrefGoogle Scholar

  • Komen H, Thorgaard GH (2007): Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture, 269, 150–173. doi: 10.1016/j.aquaculture.2007.05.009.CrossrefGoogle Scholar

  • Kubelka M, Motlík J, Schultz RM, Pavlok A (2000): Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biology of Reproduction, 62, 292–302. doi: 10.1095/biolreprod62.2.292.CrossrefGoogle Scholar

  • Kyriakis JM, Avruch J (2001): Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews, 81, 807–869.PubMedGoogle Scholar

  • LaPolt PS, Leung K, Ishimaru R, Tafoya MA, Chen JY (2003): Roles of cyclic GMP in modulating ovarian functions. Reproductive BioMedicine Online, 6, 15–23. doi: 10.1016/S1472-6483(10)62051-2.PubMedCrossrefGoogle Scholar

  • Lee J, Hata K, Miyano T, Yamashita M, Dai Y, Moor RM (1999): Tyrosine phosphorylation of p34(cdc2) in metaphase II-arrested pig oocytes in pronucleus formation without chromosome segregation. Molecular Reproduction and Development, 52, 107–116. doi: 10.1002/(SICI)1098-2795(199901)52:1<107::AID-MRD13>3.0.CO;2-Y.CrossrefGoogle Scholar

  • Lee J, Miyano T, Moor RM (2000): Localisation of phosphorylated MAP kinase during the transition from meiosis I to meiosis II in pig oocytes. Zygote, 8, 119–125. doi: 10.1017/S0967199400000897.CrossrefPubMedGoogle Scholar

  • Levesque JT, Sirard MA (1995): Effects of different kinases and phosphates on nuclear and cytoplasmic maturation of bovine oocytes. Molecular Reproduction and Development, 42, 114–121.CrossrefGoogle Scholar

  • Li MY, Fan HY, Tong C, Chen DY, Xia GL, Sun QY (2002): MAPK regulates cell cycle progression in pig oocytes and fertilized eggs. Chinese Science Bulletin, 47, 843–847. doi: 10.1360/02tb9190.CrossrefGoogle Scholar

  • Li YR, Ren CE, Zhang Q, Li JC, Chian RC (2013): Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation. Journal of Assisted Reproduction and Genetics, 30, 227–232. doi: 10.1007/s10815-013-9942-z.CrossrefGoogle Scholar

  • Liang CG, Huo LJ, Zhong ZS, Chen DY, Schatten H, Sun QY (2005): Cyclic adenosine 3´,5´-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology, 146, 4437–4444. doi: 10.1210/en.2005.CrossrefGoogle Scholar

  • Liang CG, Su YQ, Fan HY, Schatten H, Sun QY (2007): Mechanisms regulating oocyte meiotic resumption: roles of Mitogen-activated Protein Kinase. Molecular Endocrinology, 21, 2037–2055. doi: 10.1210/m3.2006-0408.CrossrefGoogle Scholar

  • Lüscher B, Brizuela L, Beach D, Eisenman RN (1991): A role for the p34cdc2 kinase and phosphatases in the regulation of phosphorylation and disassembly of lamin B2 during the cell cycle. EMBO Journal, 10, 865–875.Google Scholar

  • Machaty Z, Funahashi H, Day BN, Prather RS (1997): Developmental changes in the intracellular Ca2+ release mechanisms in porcine oocytes. Biology of Reproduction, 56, 921–930. doi: 10.1095/biolreprod56.4.921.CrossrefGoogle Scholar

  • Machtinger R, Orvieto R (2014): Bisphenol A, oocyte maturation, implantation, and IVF outcome: review of animal and human data. Reproductive Biomedicine Online, 29, 404–410. doi: 10.1016/j.rbmo.2014.06.013.CrossrefPubMedGoogle Scholar

  • Machtinger R, Combelles CM, Missmer SA, Correia KF, Williams P, Hauser R, Racowsky C (2013): Bisphenol-A and human oocyte maturation in vitro. Human Reproduction, 28, 2735–2745. doi: 10.1093/humrep/det312.CrossrefGoogle Scholar

  • Maller JL, Schwab MS, Roberts T, Gross SD, Taieb FE, Tunquist BJ (2001): The pathway of MAP kinase mediation of CSF arrest in Xenopus oocytes. Biology of the Cell, 93, 27–33. doi: 10.1016/S0248-4900(01)01127-3.CrossrefGoogle Scholar

  • Maller JL, Schwab MS, Gross SD, Taieb FE, Roberts BT, Tunquist BJ (2002): The mechanism of CSF arrest in vertebrate oocytes. Molecular and Cellular Endocrinology, 187, 173–178. doi: 10.1016/S0303-7207(01)00695-5.CrossrefGoogle Scholar

  • Masui Y, Market CL (1971): Cytoplasmic control of nuclear behaviour during meiotic maturation of frog oocytes. Journal of Experimental Zoology, 177, 129–146. doi: 10.1002/jez.1401770202.CrossrefGoogle Scholar

  • Mattioli M, Bacci ML, Galeati G, Seren E (1991): Effects of LH and FSH on the maturation of pig oocytes in vitro. Theriogenology, 36, 95–105. doi: 10.1016/0093-691X(91)90438-J.PubMedCrossrefGoogle Scholar

  • Mattioli M, Galeati G, Barboni B, Seren E (1994): Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. Journal of Reproduction and Fertility, 100, 403–409. doi: 10.1530/jrf.0.1000403.CrossrefGoogle Scholar

  • Meinecke B, Meinecke-Tillmann S (1979): Effects of gonadotropin on porcine oocyte maturation and progesteron production by porcine ovarian follicles cultured in vitro. Theriogenology, 11, 351–365. doi: 10.1016/0093-691X(79)90059-1.CrossrefGoogle Scholar

  • Mori T, Amano T, Shimizu H (2000): Role of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biology of Reproduction, 62, 913–919. doi: 10.1095/biolreprod62.4.913.CrossrefGoogle Scholar

  • Motlík J, Fulka J (1976): Breakdown of germinal vesicle in pig oocytes in vivo and in vitro. Journal of Experimental Zoology, 198, 155–162. doi: 10.1002/jez.1401980205.CrossrefGoogle Scholar

  • Motlík J, Kubelka M (1990): Cell-cycle aspects of growth and maturation of mammalian oocytes. Molecular Reproduction and Development, 27, 366–375. doi: 10.1002/mrd.1080270411.CrossrefGoogle Scholar

  • Nagahama Y (1997): 17α, 20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids, 62, 190–196.CrossrefGoogle Scholar

  • Nurse P (1993): Universal mechanism regulating onset of M-phase. Nature, 344, 503–508. doi: 10.1038/344503a0.CrossrefGoogle Scholar

  • Oh JS, Han SJ, Conti M (2010): Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption. Journal of Cell Biology, 188, 199–207. doi: 10.1083/jcb.200907161.CrossrefGoogle Scholar

  • Ohashi S, Naito K, Sugiura K, Iwamori N, Goto S, Naruoka H (2003): Analyses of mitogen-activated protein kinase function in the maturation of porcine oocytes. Biology of Reproduction, 68, 604 – 609. doi: 10.1095/biolreprod.102.008334.CrossrefGoogle Scholar

  • Palmer A, Nebreda AR (2000): The activation of MAP kinase and p34cdc2/cyclin B during the meiotic maturation of Xenopus oocytes. Progress in Cell Cycle Research, 4, 131–143. doi: 10.1007/978-1-4615-4253-7_12.CrossrefGoogle Scholar

  • Palmer A, Gavin AC, Nebreda AR. (1998): A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1. EMBO Journal, 17, 5037–5047. doi: 10.1093/emboj/17.17.5037.CrossrefGoogle Scholar

  • Pandey AK, Deshpande SB (2015): Bisphenol A depresses monosynaptic and polysynaptic reflexes in neonatal rat spinal cord in vitro involving estrogen receptor-dependent NO-mediated mechanisms. Neuroscience, 289, 349-357. doi: 10.1016/j.neuroscience.2015.01.010.CrossrefGoogle Scholar

  • Pang Y, Dong J, Thomas P (2008): Estrogen signaling characteristics of Atlantic croaker G protein-coupled receptor 30 (GPR30) and evidence it is involved in maintenance of oocyte meiotic arrest. Endocrinology, 149, 3410–3426. doi: 10.1210/en.2007-1663.CrossrefGoogle Scholar

  • Peters JM (2002): The anaphase-promoting complex: proteolysis in mitosis and beyond. Mollecular Cell, 9, 931–943. doi: 10.1016/S1097-2765(02)00540-3.CrossrefGoogle Scholar

  • Piferrer F, Beaumont A, Falguière JC, Flajšhans M, Haffray P, Colombo L (2009): Polyploid fish and shellfish: production, biology and applications to aquaculture for performance improvement and genetic containment. Aquaculture,293, 125–156.Google Scholar

  • Pirino G, Westcott MP, Donovan PJ (2009): Protein kinase A regulates resumption of meiosis by phosphorylation of Cdc25B in mammalian oocytes. Cell Cycle, 8, 665–670. doi: 10.4161/cc.8.4.7846.CrossrefGoogle Scholar

  • Prather RS, Day BN. (1998) Practical consideration for the in vitro production of pig embryos. Theriogenology, 49, 23–32. doi: 10.1016/S0093-691X(97)00399-3.CrossrefGoogle Scholar

  • Prossnitz ER, Arterburn JB, Sklar LA (2007): GPR30: A G protein-coupled receptor for estrogen. Molecular and Cellular Endocrinology, 265, 138–142.Google Scholar

  • Racowsky C (1983): Androgenic modulation of cyclic adenosine monophosphate (cAMP)-dependent meiotic arrest. Biology of Reproduction, 28, 774–787. doi: 10.1095/biolreprod28.4.774.CrossrefGoogle Scholar

  • Rasar MA, Hammes SR (2006): The physiology of the Xenopus laevis ovary. In: Liu XJ (eds): Xenopus protocols: cell biology and signal transduction. Humana Press Inc., Totowa, 17–30.Google Scholar

  • Reimann JDR, Jackson PK (2002): Emi1 is required for cytostatic factor arrest in vertebrate eggs. Nature, 416, 850–854. doi: 10.1038/416850a.CrossrefGoogle Scholar

  • Romani F, Tropea A, Scarinci E, Federico A, Dello Russo C, Lisi L, Catino S, Lanzone A, Apa R (2014): Endocrine disruptors and human reproductive failure: the in vitro effect of phthalates on human luteal cells. Fertility and Sterility, 102, 831–837. doi: 10.1016/j.fertnstert.2014.05.041.CrossrefGoogle Scholar

  • Roux PP, Blenis J (2004): ERK and p38 MAPK-Activated Protein Kinases: a family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews, 68, 320–344. doi: 10.1128/MMBR.68.2.320-344.2004.CrossrefGoogle Scholar

  • Rylková K, Kalous L, Bohlen J, Lamatsch DK, Petrtýl M (2013): Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture, 380, 13–20. doi:10.1016/j.aquaculture.2012.11.027.CrossrefGoogle Scholar

  • Salustri A, Petrungaro S, De Felici M, Conti M, Siracusa G (1985): Effect of follicle-stimulating hormone on cyclic adenosine monophosphate level and on meiotic maturation in mouse cumulus cell-enclosed oocytes cultured in vitro. Biology of Reproduction, 33, 797–802. doi: 10.1095/biolreprod33.4.797.CrossrefGoogle Scholar

  • Santos D, Matos M, Coimbra AM (2014): Developmental toxicity of endocrine disruptors in early life stages of zebrafish, a genetic and embryogenesis study. Neurotoxicology and Teratology, 46, 18–25. doi: 10.1016/j.ntt.2014.08.002.CrossrefGoogle Scholar

  • Sasaki K, Chiba K (2004): Induction of apoptosis in strafish eggs requires spontaneous inactivation of MAPK (extracellular signal-regulated kinase) followed by activation of p38 MAPK. Mollecular Biology of the Cell, 15, 1387–1396. doi: 10.1091/mbc.E03-06-0367.CrossrefGoogle Scholar

  • Sarder MRI, Penman DJ, Myers JM, McAndrew BJ (1999): Production and propagation of fully inbred clonal lines in the Nile tilapia (Oreochromis niloticus L.). Journal of Experimental Zoology, 284, 675–685. doi: 10.1002/(SICI)1097-010X(19991101)284:6%3C675::AID-JEZ9%3E3.0.CO;2-D.CrossrefGoogle Scholar

  • Schmitt A, Nebreda AR (2002): Signalling pathways in oocyte meiotic maturation. Journal of Cell Science, 115, 2457–2459.Google Scholar

  • Schultz RM, Montgomery RR, Belanoff JR (1983): Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Developmental Biology, 97, 264–273. doi: 10.1016/0012-1606(83)90085-4.PubMedCrossrefGoogle Scholar

  • Shitsukawa K, Andersen CB, Richard FJ, Horner AK, Wiersma A, Van Duin M, Conti M (2001): Cloning and characterization of the cyclic guanosine monophosphate-inhibited phosphodiesterase PDE3A expressed in mouse oocyte. Biology of Reproduction, 65, 188–196. doi: 10.1095/biolreprod65.1.188.CrossrefGoogle Scholar

  • Singh B, Meng L, Rutledge JM, Armstrong DT (1997): Effect of epidermal growth factor and follicle stimulating hormone during in vitro maturation on cytoplasmic maturation of porcine ocytes. Molecular Reproduction and Development, 46, 401–407.CrossrefGoogle Scholar

  • Šmelcová M, Tichovská H (2011): Gasotransmitters in the reproductive system: a review. Scientia Agriculturae Bohemica, 42, 188–198.Google Scholar

  • Smith LD, Ecker RE. (1970): Regulatory processes in the maturation and early cleavage of amphibian eggs. Current Topics in Developmental Biology, 5, 1–38. doi: 10.1016/S0070-2153(08)60051-4.CrossrefGoogle Scholar

  • Sorensen RA, Wassarman PM. (1976): Relationship between growth and meiotic maturation of mouse oocyte. Developmental Biology, 50, 531–536. doi: 10.1016/0012-1606(76)90172-X.PubMedCrossrefGoogle Scholar

  • Sun QY, Lu Q, Breitbart H, Chen DY (1999): cAMP inhibits mitogen-activated protein (MAP) kinase activation and resumption of meiosis, but exerts no effects after spontaneous germinal vesicle breakdown (GVBD) in mouse oocytes. Reproduction, Fertility and Development, 11, 81–86. doi: 10.1071/RD99038.CrossrefGoogle Scholar

  • Szöllösi D, Calarco P, Donahue RP (1972): Absence of centrioles in the first and second meiotic spindles of mouse oocytes. Journal of Cell Science, 11, 521–541.Google Scholar

  • Taieb R, Thibier C, Jessus C (1997): On cyclins, oocytes, and eggs. Molecular Reproduction and Development, 48, 397–411. doi: 10.1002/(SICI)1098-2795(199711)48:3<397::AIDMRD14>3.0.CO;2-T.CrossrefGoogle Scholar

  • Takakura I, Naito K, Iwamori N, Yamashita M, Kume S, Tojo H (2005): Inhibition of mitogen activated protein kinase activity induces parthenogenetic activation and increases cyclin B accumulation during porcine oocyte maturation. Journal of Reproduction and Development, 51, 617–626. doi: 10.1262/jrd.17034.CrossrefGoogle Scholar

  • Tanaka T, Yamashita M (1995): Pre-MPF is absent in immature oocytes of fishes and amphibians except Xenopus. Development, Growth and Differentiation, 37, 387–393.CrossrefGoogle Scholar

  • Tao Y, Zhang MJ, Hong HY, Xia GL (2005): Regulation between nitric oxide and MAPK signal transduction in mammals. Progress in Natural Science, 15, 1–9.CrossrefGoogle Scholar

  • Thibault C, Szölösi D, Férard M. (1987): Mammalian oocyte maturation. Reproduction Nutrition Development, 27, 865–895. doi: 10.1051/rnd:19870701.CrossrefGoogle Scholar

  • Tichovská H, Petr J, Chmelíková E, Sedmíková M, Tůmová L, Krejčová M, Dörflerová A, Rajmon R (2011): Nitric oxide and meiotic competence of porcine oocytes. Animal, 5, 1398–1405. doi: 10.1017/S1751731111000565.CrossrefPubMedGoogle Scholar

  • Tokumoto T, Yamashita M, Tokumoto M, Katsu Y, Horiguchi R, Kajiura H, Nagahama Y (1997): Initiation of cyclin B degradation by the 26S proteasome upon egg activation. The Journal of Cell Biology, 138, 1313–1322. doi: 10.1083/jcb.138.6.1313.CrossrefGoogle Scholar

  • Tokumoto T, Tokumoto M, Horiguchi R, Ishikawa K, Nagahama Y. (2004) Diethylstilbestrol induces fish oocyte maturation. Proceedings of the National Academy of Sciences of the United States of America, 101, 3686–3690. doi: 10.1073/pnas.0400072101.CrossrefGoogle Scholar

  • Tokumoto T, Tokumoto M, Nagahama Y (2005): Induction and inhibition of oocyte maturation by EDCs in zebrafish. Reproductive Biology and Endocrinology, 3, 69.CrossrefGoogle Scholar

  • Tong C, Fan HY, Chen DY, Song XF, Schatten H, Sun QY (2003): Effects of MEK inhibitor U0126 on meiotic progression in mouse oocytes: microtuble organization, asymmetric division and metaphase II arrest. Cell Research, 13, 375–383. doi: 10.1038/sj.cr.7290183.PubMedGoogle Scholar

  • Trapphoff T, Heiligentag M, El Hajj N, Haaf T, Eichenlaub-Ritter U (2013): Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertility and Sterility, 100, 1758–1767. doi: 10.1016/j.fertnstert.2013.08.021.CrossrefGoogle Scholar

  • Uhm SJ, Chung HM, Seung KR, Kim NH, Lee HT, Chung KS (1998): Interactive effect of epidermal growth factor, transforming growth factor beta and gonadotropin in in vitro maturation of porcine oocytes. Theriogenology, 49, 319. doi: 10.1016/S0093-691X(98)90672-0.CrossrefGoogle Scholar

  • Verlhac MH, De Pennhart H, Maro B, Cobb MH, Clarke HJ (1993): MAP kinase becomes stably activated at metaphase and is associated with microtubule-organizing centres during meiotic maturation of mouse oocytes. Developmental Biology, 158, 330–340. doi: 10.1006/dbio.1993.1192.CrossrefGoogle Scholar

  • Verlhac MH, Kubiac JZ, Clarke HJ, Maro B (1994): Microtubule and chromatin behaviour follow MAP kinase activity but not MPF activity during meiosis in mouse oocytes. Development, 120, 1017–1025.PubMedGoogle Scholar

  • Villa-Diaz LG, Miyano T (2004): Activation of p38 during porcine oocyte maturation. Biology of Reproduction, 71, 691–696. doi: 10.1095/biolreprod.103.026310.CrossrefGoogle Scholar

  • Wang Y, Ge W (2003): Gonadotropin regulation of follistatin expression in the cultured ovarian follicle cells of zebrafish, Danio rerio. General and comparative endocrinology, 134, 308–315. doi: 10.1016/S0016-6480(03)00275-2.CrossrefGoogle Scholar

  • Wang J, Bing X, Yu K, Tian H, Wang W, Ru S (2015): Preparation of a polyclonal antibody against goldfish (Carassius auratus) vitellogenin and its application to detect the estrogenic effects of monocrotophos pesticide. Ecotoxicology and Environmental Safety, 111, 109–116. doi:10.1016/j.ecoenv.2014.10.007.CrossrefGoogle Scholar

  • Wassarman PM (1988): The mammalian ovum. In: Knobil E, Neill J (eds): The physiology of reproduction. Raven Press, New York, 69–102.Google Scholar

  • Wassarman PM, Albertini DF (1994): The mammalian ovum. In: Knobil E, Neill J (eds): The physiology of reproduction. 2nd Ed. Raven Press, New York, 79–122.Google Scholar

  • Webb RJ, Marshall F, Swann K, Carroll J (2002): Follicle-stimulating hormone induces a gap junction-dependent dynamic change in (cAMP) and protein kinase A in mammalian oocytes. Developmental Biology, 246, 441–454. doi: 10.1006/dbio.2002.0630.CrossrefGoogle Scholar

  • Wehrend A, Meinecke B (2001): Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages. Animal Reproduction Science, 66, 175–184. doi: 10.1016/S0378-4320(01)00094-X.CrossrefGoogle Scholar

  • Winston NJ (1997): Stability of cyclin B protein during meiotic maturation and the first mitotic cell division in mouse oocytes. Biology of the Cell, 89, 211–219. doi: 10.1111/j.1768-322X.1997.tb01009.x.CrossrefGoogle Scholar

  • Wouters J, Janson S, Lusková V, Olsén KH (2012): Molecular identification of hybrids of the invasive gibel carp Carassius auratus gibelio and crucian carp Carassius carassius in Swedish waters. Journal of Fish Biology, 80, 2595–2604. Doi: 10.1111/j.1095-8649.2012.03312.x.CrossrefGoogle Scholar

  • Yamashita M (1998): Molecular mechanisms of meiotic maturation and arrest in fish and amphibian oocytes. Seminars in Cell and Developmental Biology, 9, 569–579. doi: 10.1006/scdb.1998.0251.CrossrefGoogle Scholar

  • Yan Z, Lu G, Wu D, Ye Q, Xie Z (2013): Interaction of 17β–estradiol and ketoconazole on endocrine function in goldfish (Carassius auratus). Aquatic Toxicology, 15, 19–25. doi: 10.1016/j.aquatox.2013.01.015.CrossrefGoogle Scholar

  • Yanagimachi R (1988): Mammalian fertilization. In: Knobil E, Neill J (eds): The physiology of Reproduction. Raven Press, New York, 230–278.Google Scholar

  • Yi YJ, Nagyová E, Manandhar G, Procházka R, Šutovský M, Parks CS, Šutovský P (2008): Proteolytic activity of the 26S proteasome is required for the meiotic resumption, germinal vesicle break-down, and cumulus expansion of porcine cumulus-oocyte complexes matured in vitro. Biology of Reproduction, 78, 115–126. doi: 10.1095/biolreprod.107.061366.CrossrefGoogle Scholar

  • Zhan W, Xu Y, Li AH, Zhang J, Schramm KW, Kettrup A (2000): Endocrine disruption by hexachlorobenzene in crucian carp (Carassius auratus gibelio). Bulletin of Environmental Contamination and Toxicology, 65, 560–566.CrossrefGoogle Scholar

  • Zhang MJ, Tao Y, Xia GL, Xie HR, Hong HY, Wang FC, Lei L (2005): Atrial natriuretic peptide negatively regulates follicle-stimulating hormone-induced porcine oocyte maturation and cumulus expansion via cGMP-dependent protein kinase pathway. Theriogenology, 64, 902–916. doi: 10.1016/j.theriogenology.2004.12.012.PubMedCrossrefGoogle Scholar

  • Zhong AY, Qun HL, Yu FW, Jian FG (1999): Comparative investigation on spindle behavior and MPF activity changes during oocyte maturation between gynogenetic and amphimictic crucian carp. Cell Research, 9, 145–154.CrossrefGoogle Scholar

  • Zhou L, Wang Y, Gui JF (2000): Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. Journal of Molecular Evolution, 51, 498–506.Google Scholar

About the article

Received: 2014-09-15

Accepted: 2015-02-04

Published Online: 2015-04-04

Published in Print: 2015-03-01

*Supported by the Grant Agency of the Czech University of Life Sciences Prague (CIGA), Project No. 20132016.

Citation Information: Scientia Agriculturae Bohemica, Volume 46, Issue 1, Pages 7–20, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.1515/sab-2015-0011.

Export Citation

© I. Weingartová et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

V. Sloup, I. Jankovská, I. Langrová, M. Štolcová, S. Sloup, S. Nechybová, and P. Peřinková
Scientia Agriculturae Bohemica, 2016, Volume 47, Number 4

Comments (0)

Please log in or register to comment.
Log in