Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year


CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
Online
ISSN
1805-9430
See all formats and pricing
More options …

Prediction Of Mechanical Properties Of Quench Hardening Steel*

R. Chotěborský / M. Linda
Published Online: 2015-04-04 | DOI: https://doi.org/10.1515/sab-2015-0013

Abstract

The present study investigated the application of finite element method for prediction of mechanical properties of quench hardening steel. Based on the experimental results obtained, a numerical model for simulation of continuous cooling of quench hardening steel was developed. For the simulation of the kinetics of diffusion phase transformations, the Avrami equation and additive rule were applied. A new model was also developed for martensitic transformation which was validated using metallographic analysis and hardness tests. Experimental and simulation results indicated a good agreement. The developed model information provided here could be used for simulation of continuous cooling and kinetics phase transformation as well as for prediction of final distribution of microstructures and hardness of alloy steels.

Key words: finite element model; heat flux; microstructure; hardness; continuous cooling

REFERENCES

  • Babu K, Prasanna Kumar TS (2011): Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids. International Journal of Heat Mass Transfer, 54, 106–117. doi: 10.1016/j.ijheatmasstransfer.2010.10.003.Web of ScienceCrossrefGoogle Scholar

  • Buczek A, Telejko T (2004): Inverse determination of boundary conditions during boiling water heat transfer in quenching operation. Journal of Materials Processing Technology, 155–165, 1324–1329. doi: 10.1016/j.jmatprotec.2004.04.192.CrossrefGoogle Scholar

  • Buczek A, Telejko T (2013): Investigation of heat transfer coefficient during quenching in various cooling agents. International Journal of Heat and Fluid Flow, 44, 258–264. doi: 10.1016/j.ijheatfluidflow.2013.07.004.Web of ScienceCrossrefGoogle Scholar

  • Cao P, Liu G, Wu K (2012): Numerical simulation and analysis of heat treatment of large-scale hydraulic steel gate track. International Journal of Material and Mechanical Engineering, 1, 16–20. doi: 10.3882/j.issn.1674-2370.2013.04.006.CrossrefGoogle Scholar

  • Chotěborský R (2013): Effect of heat treatment on the microstructure, hardness and abrasive wear resistance of high chromium hardfacing. Research in Agricultural Engineering, 59, 23–28.Google Scholar

  • Chotěborský R, Linda M, Ružbarský J, Müller M (2014): Modelling of the anisothermal phase transformation of austenite by electromagnetic sensor. Applied Mechanics and Materials, 616, 44–51.Web of ScienceGoogle Scholar

  • Coursey JS, Weng CI, Lin J (2008): Nanofluid boiling: the effect of surface wettability. International Journal of Heat and Fluid Flow, 29, 1577–1585.Google Scholar

  • Eshraghi-Kakhki M, Golozar MA, Kermanpur A (2011): Application of polymeric quenchant in heat treatment of crack-sensitive steel mechanical parts: modeling and experiments. Materials and Design, 32, 2870–2877. doi: 10.1016/j.matdes.2010.12.023.CrossrefWeb of ScienceGoogle Scholar

  • Fernandes P, Prabhu KN (2007): Effect of section size and agitation on heat transfer during quenching of AISI 1040 steel. Journal of Materials Processing Technology, 183, 1–5. doi: 10.1016/j.jmatprotec.2006.08.028.Web of ScienceCrossrefGoogle Scholar

  • Fernandes P, Prabhu KN (2008): Comparative study of heat transfer and wetting behaviour of conventional and bioquenchants for industrial heat treatment. International Journal of Heat Mass Transfer, 51, 526–538. doi: 10.1016/j.ijheatmasstransfer.2007.05.018.CrossrefWeb of ScienceGoogle Scholar

  • Heming C, Xieqing H, Jianbin X (2003): Comparison of surface heat transfer coefficient between various diameter cylinders using rapid cooling. Journal of Materials Processing Technology, 138, 399–402. doi: 10.1016/S0924-0136(03)00106-7.CrossrefGoogle Scholar

  • Huiping L, Guoqun Z, Shanting H, Chuanzhen H (2007): FEM simulation of quenching process and experimental verification of simulation results. Materials Science and Engineering: A, 452–453, 705–714. doi:10.1016/j.msea.2006.11.023.CrossrefGoogle Scholar

  • Jung M, Kang M, Kook-Lee Y (2012): Finite-element simulation of quenching incorporating improved transformation kinetics in a plain medium-carbon steel. Acta Materialia, 60, 525–536. doi: 10.1016/j.actamat.2011.10.007.Web of ScienceCrossrefGoogle Scholar

  • Kim HK, Oh SI (2001): Evaluation of heat transfer coefficient during heat treatment by inverse analysis. Journal of Materials Processing Technology, 112, 157–165. doi: 10.1016/S0924-0136(00)00877-3.CrossrefGoogle Scholar

  • Kobasko NI, Aronov MA, Powel JA, Canale LCF, Totten GE (2004): Intensive quenching process classification and application. Heat Treatment of Metals, 31, 51–58.Google Scholar

  • Koistinen DP, Marburger RE (1959): A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica, 7, 59–60.Google Scholar

  • Lee S-J, Pavlina EJ, Van Tyne CJ (2010): Kinetics modeling of austenite decomposition for an end-quenched 1045 steel. Materials Science and Engineering: A, 527, 3186–3194. doi:10.1016/j.msea.2010.01.081.CrossrefGoogle Scholar

  • Lee S-J, Matlock DK, Van Tyne CJ (2013): Comparison of two finite element simulation codes used to model the carburizing of steel. Computational Materials Science, 68, 47–54. doi:10.1016/j.commatsci.2012.10.007.CrossrefWeb of ScienceGoogle Scholar

  • Liu CC, Xu XJ, Liu Z (2003): A FEM modeling of quenching and tempering and its application in industrial engineering. Finite Elements in Analysis and Design, 39, 1053–1070. doi: 10.1016/S0168-874X(02)00156-7.CrossrefGoogle Scholar

  • Liu J, Hao XJ, Zhou L, Strangwood M, Davis CL, Peyton AJ (2012): Measurement of microstructure changes in 9Cr-1Mo and 2.25Cr-1Mo steels using an electromagnetic sensor. Scripta Materialia, 66, 367–370. doi:10.1016/j.scriptamat.2011.11.032.CrossrefWeb of ScienceGoogle Scholar

  • Malinowski Y, Telejko T, Hadala B (2012): Influence of heat transfer boundary conditions on the temperature field of the continuous cast ingot. Archives of Metallurgy and Materials, 57, 325–331.Web of ScienceGoogle Scholar

  • Maynier P, Dollet J, Bastien P (1977): Prediction of microstructure via empirical formulae based on CCT diagrams. Hardenability concepts with applications to steel, 163-178.Google Scholar

  • Pernach M, Pietrzyk M (2008): Numerical solution of the diffusion equation with moving boundary applied to modelling of the austenite-ferite phase transformation. Computation Materials Science, 44, 783–791.Google Scholar

  • Prabhu KN, Prasad A (2003): Metal/quenchant interfacial heat flux transients during quenching in conventional quench media and vegetable oils. Journal of Materials Engineering and Performance, 12, 48–55.Google Scholar

  • Simsir C, Gür C (2008): A FEM model based framework for simulation of thermal treatments: application to steel quenching. Computational Materials Science, 44, 588–600. doi: 10.1016/j.commatsci.2008.04.021.CrossrefWeb of ScienceGoogle Scholar

  • Smoljan B (2006): Prediction of mechanical properties and microstructure distribution of quenched and tempered steel shaft. Journal of Materials Processing Technology, 175, 393–379. doi: 10.1016/j.jmatprotec.2005.04.068.Web of ScienceCrossrefGoogle Scholar

  • Sugianto A, Narazaki M, Kogawara M, Shirayori A (2009): A comparative study on determination method of heat transfer coefficient using inverse heat transfer and iterative modification. Journal of Materials Processing Technology, 209, 4627–4632. doi: 10.1016/j.jmatprotec.2008.10.016.CrossrefWeb of ScienceGoogle Scholar

  • Yeddu HK, Malik A, Agren J, Amberg G, Borgenstam A (2012): Three-dimensional phase-field modeling of martensitic microstructure evolution in steels. Acta Materialia, 60, 1538–1547.Web of ScienceGoogle Scholar

About the article

Received: 2014-03-24

Accepted: 2015-01-14

Published Online: 2015-04-04

Published in Print: 2015-03-01


*Supported by the Internal Grant Agency of the Faculty of Engineering, Czech University of Life Sciences Prague (IGA), Project No. 2014: 31200/1312/3130.


Citation Information: Scientia Agriculturae Bohemica, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.1515/sab-2015-0013.

Export Citation

© R. Chotěborský et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in