Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Scientia Agriculturae Bohemica

The Journal of Czech University of Life Sciences Prague

4 Issues per year


CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 0.398
Source Normalized Impact per Paper (SNIP) 2016: 0.688

Open Access
Online
ISSN
1805-9430
See all formats and pricing
More options …

Application Natura 2000 Data For The Invasive Plants Spread Prediction*

J. Pěknicová
  • Corresponding author
  • Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Prague, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Petrus
  • Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ K. Berchová-Bímová
  • Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Prague, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/sab-2015-0031

Abstract

The distribution of invasive plants depends on several environmental factors, e.g. on the distance from the vector of spreading, invaded community composition, land-use, etc. The species distribution models, a research tool for invasive plants spread prediction, involve the combination of environmental factors, occurrence data, and statistical approach. For the construction of the presented distribution model, the occurrence data on invasive plants (Solidago sp., Fallopia sp., Robinia pseudoaccacia, and Heracleum mantegazzianum) and Natura 2000 habitat types from the Protected Landscape Area Kokořínsko have been intersected in ArcGIS and statistically analyzed. The data analysis was focused on (1) verification of the accuracy of the Natura 2000 habitat map layer, and the accordance with the habitats occupied by invasive species and (2) identification of a suitable scale of intersection between the habitat and species distribution. Data suitability was evaluated for the construction of the model on local scale. Based on the data, the invaded habitat types were described and the optimal scale grid was evaluated. The results show the suitability of Natura 2000 habitat types for modelling, however more input data (e.g. on soil types, elevation) are needed.

Keywords: invasive species; habitat type; modelling scale; species distribution models (SDMs)

REFERENCES

  • Austin MP (2002): Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157, 101–118. doi: 10.1016/S0304-3800(02)00205-3.CrossrefGoogle Scholar

  • Austin M (2007): Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecological Modelling, 200, 1–19. doi: 10.1016/j.ecolmodel.2006.07.005.Web of ScienceCrossrefGoogle Scholar

  • Bailey JP, Bimová K, Mandák B 2007): The potential role of polyploidy and hybridization in the further evolution of the highly invasive Fallopia taxa in Europe. Ecological Research, 22, 920–928. doi: 10.1007/s11284-007-0419-3CrossrefWeb of ScienceGoogle Scholar

  • Bímová K, Mandák B, Pyšek P (2003): Experimental study of vegetative regeneration in four invasive Reynoutria taxa. Plant Ecology, 166, 1–11.Google Scholar

  • Bímová K, Mandák B, Kašparová I. (2004): How does Reynoutria invasion fit the various theories of invasibility? Journal of Vegetation Science, 15, 495–504.Google Scholar

  • Brych P (2009): Potential spatial distribution models of invasive plants in the Czech Republic: comparison of methods and their implementations, data availability and effect of species ecology on prediction results. Master’s Thesis, University of South Bohemia in České Budějovice. (in Czech)Google Scholar

  • Dullinger S, Kleinbauer I, Peterseil J, Smolik M, Essl F (2009): Niche based distribution modelling of an invasive alien plant: effects of population status, propagule pressure and invasion history. Biological Invasions, 11, 2401–2414. doi: 10.1007/s10530-009-9424-5.Web of ScienceCrossrefGoogle Scholar

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J McC, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.Google Scholar

  • Guisan A, Zimmermann EN (2000): Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186. doi: 10.1111/j.2006.0906-7590.04596.x.CrossrefGoogle Scholar

  • Guisan A, Edwards TC Jr, Hastie T (2002): Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89-100. doi: 10.1016/S0304-3800(02)00204-1.CrossrefGoogle Scholar

  • Chytrý M, Kučera T, Kočí M (eds) (2001): Habitat Catalogue of the Czech Republic. Nature Conservation Agency of the Czech Republic, Prague.Google Scholar

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008): Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology, 45, 448–458. doi: 10.1111/j.1365-2664.2007.01398.x.CrossrefWeb of ScienceGoogle Scholar

  • Chytrý M, Wild J, Pyšek P, Jarošík V, Dendoncker N, Reginster I, Pino J, Maskell LC, Vilà M, Pergl J, Kühn I, Spangenberg JH, Settele J (2012): Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography, 21, 75–78. doi: 10.1111/j.1466-8238.2010.00573.x.CrossrefWeb of ScienceGoogle Scholar

  • Kueffer C, Pyšek P, Richardson M (2013): Integrative invasion science: model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytologist, 200, 615–633. doi: 10.1111/nph.12415.CrossrefWeb of ScienceGoogle Scholar

  • Leathwick JR, Elith J, Hastie T (2006): Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 199, 188–196. doi: 10.1016/j.ecolmodel.2006.05.022.CrossrefGoogle Scholar

  • Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K, Hájek O, Kintrová K, Láníková D, Otýpková Z, Řehořek V (2012): Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biological Conservation, 145, 179–184. doi:10.1016/j.biocon.2011.11.003.CrossrefWeb of ScienceGoogle Scholar

  • Moisen GG, Freeman EA, Blackard JA, Frescino TS, Zimmermann NE, Edwards Jr. TC (2006): Predicting tree species presence and basal area in Utah: a comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 199, 176–187. doi: 10.1016/j.ecolmodel.2006.05.021.CrossrefGoogle Scholar

  • Musil I (2005): Deciduous forests 2. Czech University of Life Sciences Prague, Prague. (in Czech)Google Scholar

  • Nehrbass N, Winkler E, Müllerová J, Pergl J, Pyšek P, Perglová I (2007): A simulation model of plant invasion: long-distance dispersal determines the pattern of spread. Biological Invasions, 9, 383–395. doi: 10.1007/s10530-006-9040-6Web of ScienceCrossrefGoogle Scholar

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011): Ecological niches and geographic distributions. Princeton University Press, New Jersey.Google Scholar

  • Pearson RG, Dawson TP, Berry PM, Harrison PA (2002): SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecological Modelling, 154, 289–300. doi: 10.1016/S0304-3800(02)00056-X.CrossrefGoogle Scholar

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007): Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.Web of ScienceGoogle Scholar

  • Pit JPW, Kriticos DJ, Dodd MB (2011): Temporal limits to simulating the future spread pattern of invasive species: Buddleja davidii in Europe and New Zealand. Ecological Modelling, 222, 1880–1887. doi: 10.1016/j.ecolmodel.2011.03.023.Web of ScienceCrossrefGoogle Scholar

  • Pyšek P, Brock JH, Bímová K, Mandák B, Jarošík V, Koukolíková I, Pergl J, Štěpánek J. (2003): Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: the determinant of invasibility at the genotype level. American Journal of Botany, 90, 1487–1495. doi: 10.3732/ajb.90.10.1487.CrossrefGoogle Scholar

  • Pyšek P, Richardson DM (2006): The biogeography of naturalization in alien plants. Journal of Biogeography, 33, 2040–2050. doi: 10.1016/j.ecolmodel.2011.03.023.CrossrefGoogle Scholar

  • Pyšek P, Chytrý M, Pergl J, Sádlo J, Wild J (2012a): Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia, 84, 575–629.Google Scholar

  • Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, Schaffner U, Vilà M (2012b): A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18, 1725–1737.Web of ScienceGoogle Scholar

  • Walck JL, Baskin JM, Baskin CC (1999): Relative competitive abilities and growth characteristics of a narrowly endemic and geographically widespread Solidago species (Asteraceae). American Journal of Botany, 86, 820–828. doi: 10.2307/2656703.CrossrefGoogle Scholar

  • Zimmermann NE, Edwards TC, Graham CG, Pearman PB, Svenning J-C (2010): New trends in species distribution modelling. Ecography, 33, 985–989. doi: 10.1111/j.1600-0587.2010.06953.x.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2014-07-31

Accepted: 2015-09-05

Published Online: 2015-12-30

Published in Print: 2015-12-01


* Supported by the Internal Grant Agency of the Czech University of Life Sciences Prague (IGA 2014), Project No. 422201312423170, and by DKR-Wetland Group, Project No. 4222013223243.


Citation Information: Scientia Agriculturae Bohemica, ISSN (Online) 1805-9430, ISSN (Print) 1211-3174, DOI: https://doi.org/10.1515/sab-2015-0031.

Export Citation

© 2015 J. Pěknicová et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jana Pěknicová and Kateřina Berchová-Bímová
Journal for Nature Conservation, 2016, Volume 34, Page 1

Comments (0)

Please log in or register to comment.
Log in