Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido


IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2017: 0.04

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 3, Issue 1

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Multiple Testing. Part II. Step-Down Procedures for Control of the Family-Wise Error Rate

Mark J. van der Laan / Sandrine Dudoit / Katherine S. Pollard
Published Online: 2004-06-14 | DOI: https://doi.org/10.2202/1544-6115.1041

The present article proposes two step-down multiple testing procedures for asymptotic control of the family-wise error rate (FWER): the first procedure is based on maxima of test statistics (step-down maxT), while the second relies on minima of unadjusted p-values (step-down minP). A key feature of our approach is the characterization and construction of a test statistics null distribution (rather than data generating null distribution) for deriving cut-offs for these test statistics (i.e., rejection regions) and the resulting adjusted p-values. For general null hypotheses, corresponding to submodels for the data generating distribution, we identify an asymptotic domination condition for a null distribution under which the step-down maxT and minP procedures asymptotically control the Type I error rate, for arbitrary data generating distributions, without the need for conditions such as subset pivotality. Inspired by this general characterization, we then propose as an explicit null distribution the asymptotic distribution of the vector of null value shifted and scaled test statistics. Step-down procedures based on consistent estimators of the null distribution are shown to also provide asymptotic control of the Type I error rate. A general bootstrap algorithm is supplied to conveniently obtain consistent estimators of the null distribution.

Keywords: Adjusted p-value; asymptotic control; bootstrap; consistency; cut-off; family-wise error rate; maxima of test statistics; minima of p-values; multiple testing; null distribution; null hypothesis; quantile; step-down; test statistic; Type I error rate

About the article

Published Online: 2004-06-14


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 3, Issue 1, Pages 1–33, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1041.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Réjane Paumelle, Joel Haas, Nathalie Hennuyer, Eric Bauge, Yann Deleye, Dieter Mesotten, Lies Langouche, Jonathan Vanhoutte, Céline Cudejko, Kristiaan Wouters, Sarah Anissa Hannou, Vanessa Legry, Steve Lancel, Fanny Lalloyer, Arnaud Polizzi, Sarra Smati, Pierre Gourdy, Emmanuelle Vallez, Emmanuel Bouchaert, Bruno Derudas, Hélène dehondt, Céline Gheeraert, Sébastien Fleury, Anne Tailleux, Alexandra Montagner, Walter Wahli, Greet Van Den Berghe, Hervé Guillou, David Dombrowicz, and Bart Staels
Journal of Hepatology, 2019
[2]
Franck Chiappini, Alain Barrier, Raphaël Saffroy, Marie-Charlotte Domart, Nicolas Dagues, Daniel Azoulay, Mylène Sebagh, Brigitte Franc, Stephan Chevalier, Brigitte Debuire, Sandrine Dudoit, and Antoinette Lemoine
Laboratory Investigation, 2006, Volume 86, Number 2, Page 154
[3]
Alessio Farcomeni
Statistical Methods in Medical Research, 2008, Volume 17, Number 4, Page 347
[4]
Tapan S. Mehta, Stanislav O. Zakharkin, Gary L. Gadbury, and David B. Allison
Physiological Genomics, 2006, Volume 28, Number 1, Page 24
[5]
Yongchao Ge, Stuart C Sealfon, and Terence P Speed
Statistical Methods in Medical Research, 2009, Volume 18, Number 6, Page 543
[6]
ALESSIO FARCOMENI
Scandinavian Journal of Statistics, 2009, Volume 36, Number 3, Page 501
[7]
Tome Eftimov, Peter Korošec, and Barbara Koroušić Seljak
Information Sciences, 2017, Volume 417, Page 186
[8]
Jacqueline N. Zadelaar, Joost A. Agelink van Rentergem, and Hilde M. Huizenga
The Clinical Neuropsychologist, 2017, Page 1
[9]
Sergey V. Malov, Alexey Antonik, Minzhong Tang, Alexandre Berred, Yi Zeng, and Stephen J. O'Brien
Biometrical Journal, 2017, Volume 59, Number 1, Page 126
[10]
Georgina E. Crichton, Merrill F. Elias, and Ala'a Alkerwi
Appetite, 2016, Volume 100, Page 126
[11]
Weiqi Wang and Eswar Krishnan
JMIR Medical Informatics, 2014, Volume 2, Number 1, Page e1
[12]
Yoshiyuki Ninomiya and Hironori Fujisawa
Biometrics, 2007, Volume 63, Number 4, Page 1135
[14]
Jeffrey C. Miecznikowski, David Gold, Lori Shepherd, and Song Liu
Statistics & Probability Letters, 2011, Volume 81, Number 11, Page 1695
[15]
Aurélie Labbe and Mary E. Thompson
Canadian Journal of Statistics, 2007, Volume 35, Number 1, Page 51

Comments (0)

Please log in or register to comment.
Log in