Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido


IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 3, Issue 1

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Calculating the Statistical Significance of Changes in Pathway Activity From Gene Expression Data

Jörg Rahnenführer / Francisco S Domingues / Jochen Maydt / Thomas Lengauer
Published Online: 2004-06-22 | DOI: https://doi.org/10.2202/1544-6115.1055

We present a statistical approach to scoring changes in activity of metabolic pathways from gene expression data. The method identifies the biologically relevant pathways with corresponding statistical significance. Based on gene expression data alone, only local structures of genetic networks can be recovered. Instead of inferring such a network, we propose a hypothesis-based approach. We use given knowledge about biological networks to improve sensitivity and interpretability of findings from microarray experiments.

Recently introduced methods test if members of predefined gene sets are enriched in a list of top-ranked genes in a microarray study. We improve this approach by defining scores that depend on all members of the gene set and that also take pairwise co-regulation of these genes into account. We calculate the significance of co-regulation of gene sets with a nonparametric permutation test. On two data sets the method is validated and its biological relevance is discussed. It turns out that useful measures for co-regulation of genes in a pathway can be identified adaptively.

We refine our method in two aspects specific to pathways. First, to overcome the ambiguity of enzyme-to-gene mappings for a fixed pathway, we introduce algorithms for selecting the best fitting gene for a specific enzyme in a specific condition. In selected cases, functional assignment of genes to pathways is feasible. Second, the sensitivity of detecting relevant pathways is improved by integrating information about pathway topology. The distance of two enzymes is measured by the number of reactions needed to connect them, and enzyme pairs with a smaller distance receive a higher weight in the score calculation.

Keywords: microarray; gene expression; metabolic pathways; KEGG database; nonparametric permutation test

About the article

Published Online: 2004-06-22


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 3, Issue 1, Pages 1–29, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1055.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Patricia Sebastian-Leon, Enrique Vidal, Pablo Minguez, Ana Conesa, Sonia Tarazona, Alicia Amadoz, Carmen Armero, Francisco Salavert, Antonio Vidal-Puig, David Montaner, and Joaquín Dopazo
BMC Systems Biology, 2014, Volume 8, Number 1
[2]
Junwei Han, Chunquan Li, Haixiu Yang, Yanjun Xu, Chunlong Zhang, Jiquan Ma, Xinrui Shi, Wei Liu, Desi Shang, Qianlan Yao, Yunpeng Zhang, Fei Su, Li Feng, and Xia Li
Journal of The Royal Society Interface, 2015, Volume 12, Number 102, Page 20140937
[3]
Suzanne Paley and Peter D. Karp
BMC Bioinformatics, 2019, Volume 20, Number 1
[4]
Joanna Zyla, Michal Marczyk, Teresa Domaszewska, Stefan H E Kaufmann, Joanna Polanska, January Weiner, and Jonathan Wren
Bioinformatics, 2019
[5]
Xinlei Wang, Min Chen, Arkady B. Khodursky, and Guanghua Xiao
Statistics in Biosciences, 2012, Volume 4, Number 2, Page 300
[6]
Alexey V. Antonov, Sabine Dietmann, Philip Wong, and Hans W. Mewes
FEBS Journal, 2009, Volume 276, Number 7, Page 2084
[7]
Junwei Han, Xinrui Shi, Yunpeng Zhang, Yanjun Xu, Ying Jiang, Chunlong Zhang, Li Feng, Haixiu Yang, Desi Shang, Zeguo Sun, Fei Su, Chunquan Li, and Xia Li
Scientific Reports, 2015, Volume 5, Number 1
[8]
Ted Laderas, Guanming Wu, and Shannon Mcweeney
Science Progress, 2015, Volume 98, Number 3, Page 253
[9]
Tunahan Çakır, Margriet M. W. B. Hendriks, Johan A. Westerhuis, and Age K. Smilde
Metabolomics, 2009, Volume 5, Number 3, Page 318
[10]
Franck Rapaport, Andrei Zinovyev, Marie Dutreix, Emmanuel Barillot, and Jean-Philippe Vert
BMC Bioinformatics, 2007, Volume 8, Number 1
[11]
Marit Ackermann and Korbinian Strimmer
BMC Bioinformatics, 2009, Volume 10, Number 1
[12]
David Edwards, Lei Wang, and Peter Sørensen
BMC Bioinformatics, 2012, Volume 13, Number 1
[13]
Adi Laurentiu Tarca, Sorin Draghici, Gaurav Bhatti, and Roberto Romero
BMC Bioinformatics, 2012, Volume 13, Number 1
[14]
Xiting Yan and Fengzhu Sun
BMC Bioinformatics, 2008, Volume 9, Number 1
[15]
Andre J Faure, Cathal Seoighe, and Nicola J Mulder
BMC Bioinformatics, 2011, Volume 12, Number 1
[16]
Wenbin Liu, Peng Xu, and Zhenshen Bao
Computational Biology and Chemistry, 2018
[17]
Ming Shi, Yanwen Chong, Weiming Shen, Xin-Ping Xie, and Hong-Qiang Wang
Genes, 2018, Volume 9, Number 7, Page 323
[18]
Tin Nguyen, Cristina Mitrea, and Sorin Draghici
Current Protocols in Bioinformatics, 2018, Volume 61, Number 1, Page 8.25.1
[19]
Gabriele Sales, Enrica Calura, Paolo Martini, and Chiara Romualdi
Nucleic Acids Research, 2013, Volume 41, Number W1, Page W89
[20]
Melissa Haendel, Irene Papatheodorou, Anika Oellrich, Christopher J. Mungall, Nicole Washington, Suzanna E. Lewis, Peter N. Robinson, and Damian Smedley
Drug Discovery Today: Disease Models, 2017
[21]
Ei-Wen Yang, Thomas Girke, and Tao Jiang
Bioinformatics, 2013, Volume 29, Number 17, Page 2153
[22]
Joanna Zyla, Michal Marczyk, January Weiner, and Joanna Polanska
BMC Bioinformatics, 2017, Volume 18, Number 1
[23]
Ichigaku Takigawa and Hiroshi Mamitsuka
Bioinformatics, 2008, Volume 24, Number 2, Page 250
[24]
Pablo Minguez and Joaquin Dopazo
Expert Review of Proteomics, 2010, Volume 7, Number 1, Page 55
[25]
Xianbin Li, Liangzhong Shen, Xuequn Shang, Wenbin Liu, and Joaquin Dopazo
PLOS ONE, 2015, Volume 10, Number 7, Page e0132813
[26]
Eleftherios Pilalis, Theodoros Koutsandreas, Ioannis Valavanis, Emmanouil Athanasiadis, George Spyrou, and Aristotelis Chatziioannou
Computational and Structural Biotechnology Journal, 2015, Volume 13, Page 248
[27]
Meric A. Ovacik, Banalata Sen, Susan Y. Euling, Kevin W. Gaido, Marianthi G. Ierapetritou, and Ioannis P. Androulakis
Toxicology and Applied Pharmacology, 2013, Volume 271, Number 3, Page 386
[28]
Purvesh Khatri, Marina Sirota, Atul J. Butte, and Christos A. Ouzounis
PLoS Computational Biology, 2012, Volume 8, Number 2, Page e1002375
[29]
Eric Bair
Wiley Interdisciplinary Reviews: Computational Statistics, 2013, Volume 5, Number 4, Page 309
[30]
Kris Laukens, Stefan Naulaerts, and Wim Vanden Berghe
PROTEOMICS, 2015, Volume 15, Number 5-6, Page 981
[31]
Aristidis G. Vrahatis, Konstantina Dimitrakopoulou, Andreas Kanavos, Spyros Sioutas, and Athanasios Tsakalidis
Computation, 2017, Volume 5, Number 2, Page 20
[32]
Tin Nguyen, Diana Diaz, Rebecca Tagett, and Sorin Draghici
Scientific Reports, 2016, Volume 6, Number 1
[33]
Michael C Wu and Xihong Lin
Statistical Methods in Medical Research, 2009, Volume 18, Number 6, Page 577
[34]
Lingxiang Wu, Xiujie Chen, Denan Zhang, Wubing Zhang, Lei Liu, Hongzhe Ma, Jingbo Yang, Hongbo Xie, Bo Liu, Qing Jin, and Ferdinando Di Cunto
PLOS ONE, 2016, Volume 11, Number 10, Page e0164542
[35]
Winston A. Haynes, Roger Higdon, Larissa Stanberry, Dwayne Collins, Eugene Kolker, and Richard Bonneau
PLoS Computational Biology, 2013, Volume 9, Number 3, Page e1002967
[36]
Alex J. Cornish, Florian Markowetz, and Jorg Stelling
PLoS Computational Biology, 2014, Volume 10, Number 9, Page e1003808
[37]
Chengyu Liu, Riku Louhimo, Marko Laakso, Rainer Lehtonen, and Sampsa Hautaniemi
BMC Cancer, 2015, Volume 15, Number 1
[38]
C. Parfett, A. Williams, J.L. Zheng, and G. Zhou
Regulatory Toxicology and Pharmacology, 2013, Volume 67, Number 1, Page 63
[40]
J.-H. Hung, T.-H. Yang, Z. Hu, Z. Weng, and C. DeLisi
Briefings in Bioinformatics, 2012, Volume 13, Number 3, Page 281
[41]
Babak Shahbaba, Catherine M. Shachaf, and Zhaoxia Yu
Statistics in Medicine, 2012, Volume 31, Number 10, Page 988

Comments (0)

Please log in or register to comment.
Log in