Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

See all formats and pricing
More options …
Volume 3, Issue 1


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Increasing Power for Tests of Genetic Association in the Presence of Phenotype and/or Genotype Error by Use of Double-Sampling

Derek Gordon / Yaning Yang / Chad Haynes / Stephen J Finch / Nancy R Mendell / Abraham M Brown / Vahram Haroutunian
Published Online: 2004-10-06 | DOI: https://doi.org/10.2202/1544-6115.1085

Phenotype and/or genotype misclassification can: significantly increase type II error probabilities for genetic case/control association, causing decrease in statistical power; and produce inaccurate estimates of population frequency parameters. We present a method, the likelihood ratio test allowing for errors (LRTae) that incorporates double-sample information for phenotypes and/or genotypes on a sub-sample of cases/controls. Population frequency parameters and misclassification probabilities are determined using a double-sample procedure as implemented in the Expectation-Maximization (EM) method. We perform null simulations assuming a SNP marker or a 4-allele (multi-allele) marker locus. To compare our method with the standard method that makes no adjustment for errors (LRTstd), we perform power simulations using a 2^k factorial design with high and low settings of: case/control samples, phenotype/genotype costs, double-sampled phenotypes/genotypes costs, phenotype/genotype error, and proportions of double-sampled individuals. All power simulations are performed fixing equal costs for the LRTstd and LRTae methods. We also consider case/control ApoE genotype data for an actual Alzheimer's study.

The LRTae method maintains correct type I error proportions for all null simulations and all significance level thresholds (10%, 5%, 1%). LRTae average estimates of population frequencies and misclassification probabilities are equal to the true values, with variances of 10e-7 to 10e-8. For power simulations, the median power difference LRTae-LRTstd at the 5% significance level is 0.06 for multi-allele data and 0.01 for SNP data. For the ApoE data example, the LRTae and LRTstd p-values are 5.8 x 10e-5 and 1.6 x 10e-3, respectively. The increase in significance is due to adjustment in the LRTae for misclassification of the most commonly reported risk allele. We have developed freely available software that performs our LRTae statistic.

Keywords: misclassification; case; control; likelihood ratio; study design; cost-benefits

About the article

Published Online: 2004-10-06

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 3, Issue 1, Pages 1–32, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1085.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

S Bollepalli, S Kaye, S Heinonen, J Kaprio, A Rissanen, K A Virtanen, K H Pietiläinen, and M Ollikainen
International Journal of Obesity, 2018, Volume 42, Number 3, Page 412
Tomomi Yamada, Naoko Kinukawa, Tsuyoshi Nakamura, and Yoshiaki Nose
Computer Methods and Programs in Biomedicine, 2009, Volume 96, Number 1, Page 42
David G. Cox and Peter Kraft
Human Heredity, 2006, Volume 61, Number 1, Page 10
Y. Zuo, G. Zou, J. Wang, H. Zhao, and H. Liang
Annals of Human Genetics, 2008, Volume 72, Number 3, Page 375
Renzhen Lai, Hong Zhang, and Yaning Yang
Genetic Epidemiology, 2007, Volume 31, Number 2, Page 143
Usha S. Govindarajulu, Donna Spiegelman, Katie L. Miller, and Peter Kraft
Genetic Epidemiology, 2006, Volume 30, Number 7, Page 590
Anna Okula Basile and Marylyn DeRiggi Ritchie
Expert Review of Molecular Diagnostics, 2018, Page 1
Yen-Pei Christy Chang, James Dae-Ok Kim, Karen Schwander, Dabeeru C Rao, Mike B Miller, Alan B Weder, Richard S Cooper, Nicholas J Schork, Michael A Province, Alanna C Morrison, Sharon L R Kardia, Thomas Quertermous, and Aravinda Chakravarti
European Journal of Human Genetics, 2006, Volume 14, Number 4, Page 469
Derek Gordon, Stephen J. Finch, and Francisco De La Vega
Human Heredity, 2011, Volume 71, Number 2, Page 113
Amrik Sahota, Jaspreet S. Parihar, Kathleen M. Capaccione, Min Yang, Kelsey Noll, Derek Gordon, David Reimer, Ill Yang, Brian T. Buckley, Marianne Polunas, Kenneth R. Reuhl, Matthew R. Lewis, Michael D. Ward, David S. Goldfarb, and Jay A. Tischfield
Urology, 2014, Volume 84, Number 5, Page 1249.e9
Duncan C. Thomas, Robert W. Haile, and David Duggan
The American Journal of Human Genetics, 2005, Volume 77, Number 3, Page 337
Nathan Tintle, Derek Gordon, Dirk Van Bruggen, and Stephen Finch
Annals of Human Genetics, 2009, Volume 73, Number 3, Page 370
M Bacac, E Migliavacca, J-C Stehle, T McKee, M Delorenzi, J-M Coindre, L Guillou, and I Stamenkovic
The Journal of Pathology, 2006, Volume 208, Number 4, Page 543
Derek Gordon, Chad Haynes, Yaning Yang, Patricia L. Kramer, and Stephen J. Finch
Genetic Epidemiology, 2007, Volume 31, Number 8, Page 853
Kwangmi Ahn, Chad Haynes, Wonkuk Kim, Rose St. Fleur, Derek Gordon, and Stephen J. Finch
Annals of Human Genetics, 2007, Volume 71, Number 2, Page 249
Mark A. Levenstien, Jürg Ott, and Derek Gordon
PLoS Genetics, 2006, Volume 2, Number 8, Page e127
François Pompanon, Aurélie Bonin, Eva Bellemain, and Pierre Taberlet
Nature Reviews Genetics, 2005, Volume 6, Number 11, Page 847
Wonkuk Kim, Derek Gordon, Jonathan Sebat, Kenny Q. Ye, Stephen J. Finch, and Peter Heutink
PLoS ONE, 2008, Volume 3, Number 10, Page e3475
Min Yuan, Hongyan Fang, and Han Zhang
Journal of Human Genetics, 2013, Volume 58, Number 10, Page 657
Mirko Manchia, Jeffrey Cullis, Gustavo Turecki, Guy A. Rouleau, Rudolf Uher, Martin Alda, and Andreas Reif
PLoS ONE, 2013, Volume 8, Number 10, Page e76295
David C. Samuels, David J. Burn, and Patrick F. Chinnery
Trends in Genetics, 2009, Volume 25, Number 11, Page 486
Goo Jun, Matthew Flickinger, Kurt N. Hetrick, Jane M. Romm, Kimberly F. Doheny, Gonçalo R. Abecasis, Michael Boehnke, and Hyun Min Kang
The American Journal of Human Genetics, 2012, Volume 91, Number 5, Page 839
Morgan Mayer-Jochimsen, Shannon Fast, Nathan L. Tintle, and Zhaoxia Yu
PLoS ONE, 2013, Volume 8, Number 3, Page e56626
Lin Hou, Ning Sun, Shrikant Mane, Fred Sayward, Nallakkandi Rajeevan, Kei-Hoi Cheung, Kelly Cho, Saiju Pyarajan, Mihaela Aslan, Perry Miller, Philip D. Harvey, J. Michael Gaziano, John Concato, and Hongyu Zhao
Genetic Epidemiology, 2017, Volume 41, Number 2, Page 152
Francisco M. de La Vega, Derek Gordon, Xiaoping Su, Charles Scafe, Hadar Isaac, Dennis A. Gilbert, and Eugene G. Spier
Human Heredity, 2005, Volume 60, Number 1, Page 43
Kaitlyn Cook, Alejandra Benitez, Casey Fu, and Nathan Tintle
Frontiers in Genetics, 2014, Volume 5
Brooke L. Fridley, Stephen T. Turner, Arlene B. Chapman, Andrei S. Rodin, Eric Boerwinkle, and Kent R. Bailey
Computational Statistics & Data Analysis, 2008, Volume 52, Number 12, Page 5367
S. Hossain, N. D. Le, A. R. Brooks-Wilson, and J. J. Spinelli
American Journal of Epidemiology, 2009, Volume 170, Number 8, Page 994
Wensheng Zhu, Anthony Y. C. Kuk, and Jianhua Guo
Biometrical Journal, 2009, Volume 51, Number 4, Page 644
Li Zhang, Bhramar Mukherjee, Malay Ghosh, Stephen Gruber, and Victor Moreno
Statistics in Medicine, 2008, Volume 27, Number 15, Page 2756

Comments (0)

Please log in or register to comment.
Log in