Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year

IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

See all formats and pricing
More options …
Volume 4, Issue 1 (Jan 2005)


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Reproducible Research: A Bioinformatics Case Study

Robert Gentleman
Published Online: 2005-01-11 | DOI: https://doi.org/10.2202/1544-6115.1034

While scientific research and the methodologies involved have gone through substantial technological evolution the technology involved in the publication of the results of these endeavors has remained relatively stagnant. Publication is largely done in the same manner today as it was fifty years ago. Many journals have adopted electronic formats, however, their orientation and style is little different from a printed document. The documents tend to be static and take little advantage of computational resources that might be available. Recent work, Gentleman and Temple Lang (2003), suggests a methodology and basic infrastructure that can be used to publish documents in a substantially different way. Their approach is suitable for the publication of papers whose message relies on computation. Stated quite simply, Gentleman and Temple Lang (2003) propose a paradigm where documents are mixtures of code and text. Such documents may be self-contained or they may be a component of a compendium which provides the infrastructure needed to provide access to data and supporting software. These documents, or compendiums, can be processed in a number of different ways. One transformation will be to replace the code with its output -- thereby providing the familiar, but limited, static document. In this paper we apply these concepts to a seminal paper in bioinformatics, namely The Molecular Classification of Cancer, Golub et al (1999). The authors of that paper have generously provided data and other information that have allowed us to largely reproduce their results. Rather than reproduce this paper exactly we demonstrate that such a reproduction is possible and instead concentrate on demonstrating the usefulness of the compendium concept itself.

This article offers supplementary material which is provided at the end of the article.

Keywords: computational science; reproducibility; literate programming

About the article

Published Online: 2005-01-11

Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.2202/1544-6115.1034.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Matthew E. Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, and Gordon K. Smyth
Nucleic Acids Research, 2015, Volume 43, Number 7, Page e47
Roger D. Peng, Francesca Dominici, and Scott L. Zeger
American Journal of Epidemiology, 2006, Volume 163, Number 9, Page 783
Ben Marwick, Carl Boettiger, and Lincoln Mullen
The American Statistician, 2017, Page 0
Lisa Hui, Heather C. Wick, Andrea G. Edlow, Janet M. Cowan, and Diana W. Bianchi
Obstetrics & Gynecology, 2013, Volume 121, Number 6, Page 1248
Wolfgang Huber, Vincent J Carey, Robert Gentleman, Simon Anders, Marc Carlson, Benilton S Carvalho, Hector Corrada Bravo, Sean Davis, Laurent Gatto, Thomas Girke, Raphael Gottardo, Florian Hahne, Kasper D Hansen, Rafael A Irizarry, Michael Lawrence, Michael I Love, James MacDonald, Valerie Obenchain, Andrzej K Oleś, Hervé Pagès, Alejandro Reyes, Paul Shannon, Gordon K Smyth, Dan Tenenbaum, Levi Waldron, and Martin Morgan
Nature Methods, 2015, Volume 12, Number 2, Page 115
Simon Anders, Davis J McCarthy, Yunshun Chen, Michal Okoniewski, Gordon K Smyth, Wolfgang Huber, and Mark D Robinson
Nature Protocols, 2013, Volume 8, Number 9, Page 1765
John P A Ioannidis, David B Allison, Catherine A Ball, Issa Coulibaly, Xiangqin Cui, Aedín C Culhane, Mario Falchi, Cesare Furlanello, Laurence Game, Giuseppe Jurman, Jon Mangion, Tapan Mehta, Michael Nitzberg, Grier P Page, Enrico Petretto, and Vera van Noort
Nature Genetics, 2009, Volume 41, Number 2, Page 149
Michael Reich, Ted Liefeld, Joshua Gould, Jim Lerner, Pablo Tamayo, and Jill P Mesirov
Nature Genetics, 2006, Volume 38, Number 5, Page 500
M H Albert, J Mannert, K K Fleischmann, M Schiemann, P Pagel, I Schmid, and T Magg
Genes and Immunity, 2014, Volume 15, Number 5, Page 303
B. Haibe-Kains, C. Desmedt, C. Sotiriou, and G. Bontempi
Bioinformatics, 2008, Volume 24, Number 19, Page 2200
Laurent Gatto, Lisa M. Breckels, Thomas Naake, and Sebastian Gibb
PROTEOMICS, 2015, Volume 15, Number 8, Page 1375
Andrea G. Edlow, Neeta L. Vora, Lisa Hui, Heather C. Wick, Janet M. Cowan, Diana W. Bianchi, and Victor Sanchez-Margalet
PLoS ONE, 2014, Volume 9, Number 2, Page e88661
Yangsik Jeong, Yang Xie, Guanghua Xiao, Carmen Behrens, Luc Girard, Ignacio I. Wistuba, John D. Minna, David J. Mangelsdorf, and William Pao
PLoS Medicine, 2010, Volume 7, Number 12, Page e1000378
Laurent Gatto and Andy Christoforou
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2014, Volume 1844, Number 1, Page 42
Lisa Hui, Heather C. Wick, Kenneth J. Moise, Anthony Johnson, Francois Luks, Sina Haeri, Kirby L. Johnson, and Diana W. Bianchi
Prenatal Diagnosis, 2013, Volume 33, Number 9, Page 873
Stephen H Friend and Thea C Norman
Nature Biotechnology, 2013, Volume 31, Number 4, Page 297
Joern Toedling, Wolfgang Huber, and Fran Lewitter
PLoS Computational Biology, 2008, Volume 4, Number 11, Page e1000227
Paul J. McMurdie, Susan Holmes, and Michael Watson
PLoS ONE, 2013, Volume 8, Number 4, Page e61217
Roger D. Peng and Sandrah P. Eckel
Computing in Science & Engineering, 2009, Volume 11, Number 1, Page 28
Sergey Fomel and Jon F. Claerbout
Computing in Science & Engineering, 2009, Volume 11, Number 1, Page 5
Francesco Russo, Dario Righelli, and Claudia Angelini
BioMed Research International, 2016, Volume 2016, Page 1
Tobias Kuhn and Michel Dumontier
IEEE Transactions on Knowledge and Data Engineering, 2015, Volume 27, Number 9, Page 2390
Daniela Börnigen, Yo Sup Moon, Gholamali Rahnavard, Levi Waldron, Lauren McIver, Afrah Shafquat, Eric A. Franzosa, Larissa Miropolsky, Christopher Sweeney, Xochitl C. Morgan, Wendy S. Garrett, and Curtis Huttenhower
PeerJ, 2015, Volume 3, Page e791
M. Brandon Westover, Mouhsin M. Shafi, ShiNung Ching, Jessica J. Chemali, Patrick L. Purdon, Sydney S. Cash, and Emery N. Brown
Journal of Neuroscience Methods, 2013, Volume 219, Number 1, Page 131
Kingshuk Roy Choudhury and Ray Gibson
Molecular Imaging and Biology, 2012, Volume 14, Number 4, Page 395
Jonathan B. Thayn and Joseph M. Simanis
Annals of the Association of American Geographers, 2013, Volume 103, Number 1, Page 47
Levent Yilmaz
Journal of Experimental & Theoretical Artificial Intelligence, 2012, Volume 24, Number 4, Page 457
M. Pavon, M. Parreno, M. Tellez-Gabriel, F. Sancho, M. Lopez, M. Cespedes, I. Casanova, A. Lopez-Pousa, M. Mangues, M. Quer, A. Barnadas, X. Leon, and R. Mangues
Carcinogenesis, 2012, Volume 33, Number 9, Page 1707
Josef Spidlen, Parisa Shooshtari, Tobias R Kollmann, and Ryan R Brinkman
BMC Research Notes, 2011, Volume 4, Number 1, Page 50

Comments (0)

Please log in or register to comment.
Log in