Jump to ContentJump to Main Navigation
Show Summary Details

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year


IMPACT FACTOR increased in 2015: 1.265
5-year IMPACT FACTOR: 1.423
Rank 42 out of 123 in category Statistics & Probability in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.954
Source Normalized Impact per Paper (SNIP) 2015: 0.554
Impact per Publication (IPP) 2015: 1.061

Mathematical Citation Quotient (MCQ) 2015: 0.06

Online
ISSN
1544-6115
See all formats and pricing
Volume 4, Issue 1 (May 2005)

Incorporating Biological Information as a Prior in an Empirical Bayes Approach to Analyzing Microarray Data

Wei Pan
  • University of Minnesota
Published Online: 2005-05-25 | DOI: https://doi.org/10.2202/1544-6115.1124

Currently the practice of using existing biological knowledge in analyzing high throughput genomic and proteomic data is mainly for the purpose of validations. Here we take a different approach of incorporating biological knowledge into statistical analysis to improve statistical power and efficiency. Specifically, we consider how to fuse biological information into a mixture model to analyze microarray data. In contrast to a standard mixture model where it is assumed that all the genes come from the same (marginal) distribution, including an equal prior probability of having an event, such as having differential expression or being bound by a transcription factor (TF), our proposed mixture model allows the genes in different groups to have different distributions while the grouping of the genes reflects biological information. Using a list of about 800 putative cell cycle-regulated genes as prior biological knowledge, we analyze a genome-wide location data to detect binding sites of TF Fkh1. We find that our proposal improves over the standard approach, resulting in reduced false discovery rates (FDR), and hence it is a useful alternative to the current practice.

Keywords: Differential gene expression; Empirical Bayes; FDR; GO; Mixture model; Permutation.

About the article

Published Online: 2005-05-25


Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.2202/1544-6115.1124. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Peter Kupfer, Reinhard Guthke, Dirk Pohlers, Rene Huber, Dirk Koczan, and Raimund W Kinne
BMC Medical Genomics, 2012, Volume 5, Number 1, Page 23

Comments (0)

Please log in or register to comment.
Log in