Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido


IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 4, Issue 1

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm

Asger Hobolth / Jens Ledet Jensen
Published Online: 2005-08-12 | DOI: https://doi.org/10.2202/1544-6115.1127

We describe statistical inference in continuous time Markov processes of DNA sequences related by a phylogenetic tree. The maximum likelihood estimator can be found by the expectation maximization (EM) algorithm and an expression for the information matrix is also derived. We provide explicit analytical solutions for the EM algorithm and information matrix.

Keywords: continuous time Markov chain; EM algorithm; information matrix; likelihood inference; molecular evolution

About the article

Published Online: 2005-08-12


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 4, Issue 1, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.2202/1544-6115.1127.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tomotaka Matsumoto, Hiroshi Akashi, and Ziheng Yang
Genetics, 2015, Volume 200, Number 3, Page 873
[2]
Vladimir N. Minin and Marc A. Suchard
Journal of Mathematical Biology, 2007, Volume 56, Number 3, Page 391
[3]
P. Metzner, E. Dittmer, T. Jahnke, and Ch. Schütte
Journal of Computational Physics, 2007, Volume 227, Number 1, Page 353
[4]
NILS LID HJORT and CRISTIANO VARIN
Scandinavian Journal of Statistics, 2008, Volume 35, Number 1, Page 64
[5]
Asger Hobolth and Jens Ledet Jensen
Journal of Applied Probability, 2011, Volume 48, Number 4, Page 911
[6]
Rodrigo Carvajal, Rafael Orellana, Dimitrios Katselis, Pedro Escárate, Juan Carlos Agüero, and Yong-Hong Kuo
PLOS ONE, 2018, Volume 13, Number 12, Page e0208499
[8]
Forrest W. Crawford, Lam Si Tung Ho, and Marc A. Suchard
Wiley Interdisciplinary Reviews: Computational Statistics, 2018, Page e1423
[9]
Christopher Koch, Jay Konieczka, Toni Delorey, Ana Lyons, Amanda Socha, Kathleen Davis, Sara A. Knaack, Dawn Thompson, Erin K. O'Shea, Aviv Regev, and Sushmita Roy
Cell Systems, 2017, Volume 4, Number 5, Page 543
[11]
Amrit Dhar and Vladimir N. Minin
Journal of Computational Biology, 2017, Volume 24, Number 5, Page 377
[12]
Alexander Kremer and Rafael Weißbach
Statistical Papers, 2013, Volume 54, Number 4, Page 993
[14]
Robert T. McGibbon and Vijay S. Pande
The Journal of Chemical Physics, 2015, Volume 143, Number 3, Page 034109
[15]
Hui-Jie Lee, Nicolas Rodrigue, and Jeffrey L. Thorne
Molecular Biology and Evolution, 2015, Volume 32, Number 8, Page 1948
[16]
Philipp Metzner, Illia Horenko, and Christof Schütte
Physical Review E, 2007, Volume 76, Number 6
[17]
Jane M. Lange and Vladimir N. Minin
Statistics in Medicine, 2013, Volume 32, Number 26, Page 4581

Comments (0)

Please log in or register to comment.
Log in