Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year


IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 6, Issue 1 (Feb 2007)

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Super Learning: An Application to the Prediction of HIV-1 Drug Resistance

Sandra E. Sinisi / Eric C Polley / Maya L Petersen / Soo-Yon Rhee / Mark J. van der Laan
Published Online: 2007-02-23 | DOI: https://doi.org/10.2202/1544-6115.1240

Many alternative data-adaptive algorithms can be used to learn a predictor based on observed data. Examples of such learners include decision trees, neural networks, support vector regression, least angle regression, logic regression, and the Deletion/Substitution/Addition algorithm. The optimal learner for prediction will vary depending on the underlying data-generating distribution. In this article we introduce the "super learner", a prediction algorithm that applies any set of candidate learners and uses cross-validation to select between them. Theory shows that asymptotically the super learner performs essentially as well as or better than any of the candidate learners. In this article we present the theory behind the super learner, and illustrate its performance using simulations. We further apply the super learner to a data example, in which we predict the phenotypic antiretroviral susceptibility of HIV based on viral genotype. Specifically, we apply the super learner to predict susceptibility to a specific protease inhibitor, nelfinavir, using a set of database-derived non-polymorphic treatment-selected mutations.

Keywords: cross-validation; loss-based estimation; machine learning; genomics; antiretroviral

About the article

Published Online: 2007-02-23


Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.2202/1544-6115.1240.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tao Liu, Joseph W. Hogan, Michael J. Daniels, Mia Coetzer, Yizhen Xu, Gerald Bove, Allison K. DeLong, Lauren Ledingham, Millicent Orido, Lameck Diero, and Rami Kantor
JAIDS Journal of Acquired Immune Deficiency Syndromes, 2017, Volume 75, Number 5, Page 580
[2]
André Altmann, Michal Rosen-Zvi, Mattia Prosperi, Ehud Aharoni, Hani Neuvirth, Eugen Schülter, Joachim Büch, Daniel Struck, Yardena Peres, Francesca Incardona, Anders Sönnerborg, Rolf Kaiser, Maurizio Zazzi, Thomas Lengauer, and Derya Unutmaz
PLoS ONE, 2008, Volume 3, Number 10, Page e3470
[3]
Cliona M. McHale, Luoping Zhang, Reuben Thomas, and Martyn T. Smith
Environmental and Molecular Mutagenesis, 2013, Volume 54, Number 7, Page 500
[4]
Niko Beerenwinkel, Hesam Montazeri, Heike Schuhmacher, Patrick Knupfer, Viktor von Wyl, Hansjakob Furrer, Manuel Battegay, Bernard Hirschel, Matthias Cavassini, Pietro Vernazza, Enos Bernasconi, Sabine Yerly, Jürg Böni, Thomas Klimkait, Cristina Cellerai, Huldrych F. Günthard, and Anne-Mieke Vandamme
PLoS Computational Biology, 2013, Volume 9, Number 8, Page e1003203
[6]
Allal Houssaini, Lambert Assoumou, Veronica Miller, Vincent Calvez, Anne-Geneviève Marcelin, Philippe Flandre, and Nicolas Sluis-Cremer
PLoS ONE, 2013, Volume 8, Number 3, Page e59014
[7]
Michael T. Zimmermann, Richard B. Kennedy, Diane E. Grill, Ann L. Oberg, Krista M. Goergen, Inna G. Ovsyannikova, Iana H. Haralambieva, and Gregory A. Poland
Frontiers in Immunology, 2017, Volume 8
[8]
Monique A. Ladds, Adam P. Thompson, Julianna-Piroska Kadar, David J Slip, David P Hocking, and Robert G Harcourt
Animal Biotelemetry, 2017, Volume 5, Number 1
[9]
Safoora Gharibzadeh, Mohammad Ali Mansournia, Abbas Foroushani, Ahad Alizadeh, Atieh Amouzegar, Kamran Mehrabani-Zeinabad, and Kazem Mohammad
Communications in Statistics - Simulation and Computation, 2017, Page 0
[10]
Tao Liu, Joseph W. Hogan, Lisa Wang, Shangxuan Zhang, and Rami Kantor
Journal of the American Statistical Association, 2013, Volume 108, Number 504, Page 1173

Comments (0)

Please log in or register to comment.
Log in