Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

See all formats and pricing
More options …
Volume 7, Issue 1


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Predicting Protein Concentrations with ELISA Microarray Assays, Monotonic Splines and Monte Carlo Simulation

Don Simone Daly / Kevin K Anderson / Amanda M White / Rachel M Gonzalez / Susan M Varnum / Richard C Zangar
Published Online: 2008-07-14 | DOI: https://doi.org/10.2202/1544-6115.1364

Making sound proteomic inferences using ELISA microarray assay requires both an accurate prediction of protein concentration and a credible estimate of its error. We present a method using monotonic spline statistical models (MS), penalized constrained least squares fitting (PCLS) and Monte Carlo simulation (MC) to predict ELISA microarray protein concentrations and estimate their prediction errors. We contrast the MSMC (monotone spline Monte Carlo) method with a LNLS (logistic nonlinear least squares) method using simulated and real ELISA microarray data sets.MSMC rendered good fits in almost all tests, including those with left and/or right clipped standard curves. MS predictions were nominally more accurate; especially at the extremes of the prediction curve. MC provided credible asymmetric prediction intervals for both MS and LN fits that were superior to LNLS propagation-of-error intervals in achieving the target statistical confidence. MSMC was more reliable when automated prediction across simultaneous assays was applied routinely with minimal user guidance.

Keywords: ELISA microarray; monotonie spline; prediction interval; Monte Carlo simulation

About the article

Published Online: 2008-07-14

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 7, Issue 1, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1364.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in