Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido


IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

Online
ISSN
1544-6115
Alle Formate und Preise
Weitere Optionen …
Band 7, Heft 1

Hefte

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Importance Sampling for the Infinite Sites Model

Asger Hobolth / Marcy K Uyenoyama / Carsten Wiuf
Online erschienen: 30.10.2008 | DOI: https://doi.org/10.2202/1544-6115.1400

Importance sampling or Markov Chain Monte Carlo sampling is required for state-of-the-art statistical analysis of population genetics data. The applicability of these sampling-based inference techniques depends crucially on the proposal distribution. In this paper, we discuss importance sampling for the infinite sites model. The infinite sites assumption is attractive because it constraints the number of possible genealogies, thereby allowing for the analysis of larger data sets. We recall the Griffiths-Tavaré and Stephens-Donnelly proposals and emphasize the relation between the latter proposal and exact sampling from the infinite alleles model. We also introduce a new proposal that takes knowledge of the ancestral state into account. The new proposal is derived from a new result on exact sampling from a single site. The methods are illustrated on simulated data sets and the data considered in Griffiths and Tavaré (1994).

Keywords: ancestral inference; coalescent; importance sampling; infinite sites

Artikelinformationen

Online erschienen: 30.10.2008


Quellenangabe: Statistical Applications in Genetics and Molecular Biology, Band 7, Heft 1, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1400.

Zitat exportieren

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

[1]
Julia A. Palacios, Amandine Véber, Lorenzo Cappello, Zhangyuan Wang, John Wakeley, and Sohini Ramachandran
Genetics, 2019, Jahrgang 213, Nummer 3, Seite 967
[2]
Asger Hobolth and Carsten Wiuf
Theoretical Population Biology, 2009, Jahrgang 75, Nummer 4, Seite 260
[3]
Jere Koskela, Paul Jenkins, and Dario Spanò
Journal of Applied Probability, 2015, Jahrgang 52, Nummer 2, Seite 519
[4]
John A. Kamm, Jeffrey P. Spence, Jeffrey Chan, and Yun S. Song
Genetics, 2016, Jahrgang 203, Nummer 3, Seite 1381
[5]
Susanta Tewari and John L Spouge
BMC Bioinformatics, 2012, Jahrgang 13, Nummer 1
[6]
[7]
Tamara Villaverde, Lisa Pokorny, Sanna Olsson, Mario Rincón-Barrado, Matthew G. Johnson, Elliot M. Gardner, Norman J. Wickett, Julià Molero, Ricarda Riina, and Isabel Sanmartín
New Phytologist, 2018
[9]
Matthias Birkner, Jochen Blath, and Matthias Steinrücken
Theoretical Population Biology, 2011, Jahrgang 79, Nummer 4, Seite 155
[10]
[11]
Yufeng Wu
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010, Jahrgang 7, Nummer 4, Seite 611
[12]
Susanta Tewari and John L. Spouge
PeerJ, 2015, Jahrgang 3, Seite e1203

Kommentare (0)