Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year

IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

See all formats and pricing
More options …
Volume 8, Issue 1 (Jan 2009)


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Sparse Canonical Correlation Analysis with Application to Genomic Data Integration

Elena Parkhomenko / David Tritchler / Joseph Beyene
Published Online: 2009-01-06 | DOI: https://doi.org/10.2202/1544-6115.1406

Large scale genomic studies with multiple phenotypic or genotypic measures may require the identification of complex multivariate relationships. In multivariate analysis a common way to inspect the relationship between two sets of variables based on their correlation is canonical correlation analysis, which determines linear combinations of all variables of each type with maximal correlation between the two linear combinations. However, in high dimensional data analysis, when the number of variables under consideration exceeds tens of thousands, linear combinations of the entire sets of features may lack biological plausibility and interpretability. In addition, insufficient sample size may lead to computational problems, inaccurate estimates of parameters and non-generalizable results. These problems may be solved by selecting sparse subsets of variables, i.e. obtaining sparse loadings in the linear combinations of variables of each type. In this paper we present Sparse Canonical Correlation Analysis (SCCA) which examines the relationships between two types of variables and provides sparse solutions that include only small subsets of variables of each type by maximizing the correlation between the subsets of variables of different types while performing variable selection. We also present an extension of SCCA - adaptive SCCA. We evaluate their properties using simulated data and illustrate practical use by applying both methods to the study of natural variation in human gene expression.

Keywords: canonical correlation; sparseness; data integration

About the article

Published Online: 2009-01-06

Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1406.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Zhi-Xu Li, Qiang Yang, An Liu, Guan-Feng Liu, Jia Zhu, Jia-Jie Xu, Kai Zheng, and Min Zhang
Journal of Computer Science and Technology, 2017, Volume 32, Number 5, Page 858
Hyemin Jang, Hunki Kwon, Jin-Ju Yang, Jinwoo Hong, Yeshin Kim, Ko Woon Kim, Jin San Lee, Young Kyoung Jang, Sung Tae Kim, Kyung Han Lee, Jae Hong Lee, Duk L. Na, Sang Won Seo, Hee Jin Kim, and Jong-Min Lee
Scientific Reports, 2017, Volume 7, Number 1
Huawen Liu, Lin Liu, Thuc Duy Le, Ivan Lee, Shiliang Sun, and Jiuyong Li
IEEE Transactions on Multimedia, 2017, Volume 19, Number 8, Page 1848
Ali-Reza Mohammadi-Nejad, Gholam-Ali Hossein-Zadeh, and Hamid Soltanian-Zadeh
IEEE Transactions on Medical Imaging, 2017, Volume 36, Number 7, Page 1438
Jinhua Sheng
International Journal of Imaging Systems and Technology, 2017, Volume 27, Number 2, Page 162
Pekka Marttinen, Matti Pirinen, Antti-Pekka Sarin, Jussi Gillberg, Johannes Kettunen, Ida Surakka, Antti J. Kangas, Pasi Soininen, Paul O’Reilly, Marika Kaakinen, Mika Kähönen, Terho Lehtimäki, Mika Ala-Korpela, Olli T. Raitakari, Veikko Salomaa, Marjo-Riitta Järvelin, Samuli Ripatti, and Samuel Kaski
Bioinformatics, 2014, Volume 30, Number 14, Page 2026
Dongdong Lin, Vince D. Calhoun, and Yu-Ping Wang
Medical Image Analysis, 2014, Volume 18, Number 6, Page 891
Silvia Pineda, Francisco X. Real, Manolis Kogevinas, Alfredo Carrato, Stephen J. Chanock, Núria Malats, Kristel Van Steen, and David McConkey
PLOS Genetics, 2015, Volume 11, Number 12, Page e1005689
Kosuke Yoshida, Junichiro Yoshimoto, and Kenji Doya
BMC Bioinformatics, 2017, Volume 18, Number 1
Marc Chadeau-Hyam, Gianluca Campanella, Thibaut Jombart, Leonardo Bottolo, Lutzen Portengen, Paolo Vineis, Benoit Liquet, and Roel C.H. Vermeulen
Environmental and Molecular Mutagenesis, 2013, Volume 54, Number 7, Page 542
Brian B. Avants, David J. Libon, Katya Rascovsky, Ashley Boller, Corey T. McMillan, Lauren Massimo, H. Branch Coslett, Anjan Chatterjee, Rachel G. Gross, and Murray Grossman
NeuroImage, 2014, Volume 84, Page 698
Jose A. Seoane, Colin Campbell, Ian N. M. Day, Juan P. Casas, Tom R. Gaunt, and Christos A. Ouzounis
PLoS Computational Biology, 2014, Volume 10, Number 10, Page e1003876
Juho Rousu, Daniel D. Agranoff, Olugbemiro Sodeinde, John Shawe-Taylor, Delmiro Fernandez-Reyes, and Nathan D. Price
PLoS Computational Biology, 2013, Volume 9, Number 4, Page e1003018
Claudia Grellmann, Sebastian Bitzer, Jane Neumann, Lars T. Westlye, Ole A. Andreassen, Arno Villringer, and Annette Horstmann
NeuroImage, 2015, Volume 107, Page 289
Sijia Huang, Kumardeep Chaudhary, and Lana X. Garmire
Frontiers in Genetics, 2017, Volume 8
Idowu O. Ayodeji and Titilola O. Obilade
Communications in Statistics - Theory and Methods, 2017, Page 0
Loris De Cecco, Marco Giannoccaro, Edoardo Marchesi, Paolo Bossi, Federica Favales, Laura Locati, Lisa Licitra, Silvana Pilotti, and Silvana Canevari
Genes, 2017, Volume 8, Number 1, Page 35
Cemal Okan Sakar and Olcay Kursun
IEEE Transactions on Neural Networks and Learning Systems, 2017, Volume 28, Number 1, Page 164
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander, and Vladimir Brusic
PLoS ONE, 2012, Volume 7, Number 4, Page e35236
Jingjie Yan, Wenming Zheng, Qinyu Xu, Guanming Lu, Haibo Li, and Bei Wang
IEEE Transactions on Multimedia, 2016, Volume 18, Number 7, Page 1319
Jia Chen and Ioannis D. Schizas
IEEE Transactions on Signal Processing, 2016, Volume 64, Number 3, Page 688
Chongliang Luo, Jin Liu, Dipak K. Dey, and Kun Chen
Biostatistics, 2016, Volume 17, Number 3, Page 468
Xin-Guo Liu, Xue-Feng Wang, and Wei-Guo Wang
SIAM Journal on Matrix Analysis and Applications, 2015, Volume 36, Number 4, Page 1489
Zhao Zhang, Mingbo Zhao, and Tommy W.S. Chow
IEEE Transactions on Knowledge and Data Engineering, 2013, Volume 25, Number 10, Page 2192
Maria J. Rosa, Mitul A. Mehta, Emilio M. Pich, Celine Risterucci, Fernando Zelaya, Antje A. T. S. Reinders, Steve C. R. Williams, Paola Dazzan, Orla M. Doyle, and Andre F. Marquand
Frontiers in Neuroscience, 2015, Volume 9
Ines Wilms and Christophe Croux
Biometrical Journal, 2015, Volume 57, Number 5, Page 834
Oliver P. Günther, Heesun Shin, Raymond T. Ng, W. Robert McMaster, Bruce M. McManus, Paul A. Keown, Scott. J. Tebbutt, and Kim-Anh Lê Cao
OMICS: A Journal of Integrative Biology, 2014, Volume 18, Number 11, Page 682
Yusuke Fujiwara, Yoichi Miyawaki, and Yukiyasu Kamitani
Neural Computation, 2013, Volume 25, Number 4, Page 979
Brian McWilliams and Giovanni Montana
Statistical Analysis and Data Mining, 2012, Volume 5, Number 4, Page 304
Xi Chen and Han Liu
Statistics in Biosciences, 2012, Volume 4, Number 1, Page 3
Ana Conesa, José M. Prats-Montalbán, Sonia Tarazona, Ma José Nueda, and Alberto Ferrer
Chemometrics and Intelligent Laboratory Systems, 2010, Volume 104, Number 1, Page 101
Maria Vounou, Thomas E. Nichols, and Giovanni Montana
NeuroImage, 2010, Volume 53, Number 3, Page 1147
Xiaohong Chen, Songcan Chen, and Hui Xue
Applied Mathematics and Computation, 2011, Volume 217, Number 22, Page 9041

Comments (0)

Please log in or register to comment.
Log in