Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 8, Issue 1


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Sparse Canonical Correlation Analysis with Application to Genomic Data Integration

Elena Parkhomenko / David Tritchler / Joseph Beyene
Published Online: 2009-01-06 | DOI: https://doi.org/10.2202/1544-6115.1406

Large scale genomic studies with multiple phenotypic or genotypic measures may require the identification of complex multivariate relationships. In multivariate analysis a common way to inspect the relationship between two sets of variables based on their correlation is canonical correlation analysis, which determines linear combinations of all variables of each type with maximal correlation between the two linear combinations. However, in high dimensional data analysis, when the number of variables under consideration exceeds tens of thousands, linear combinations of the entire sets of features may lack biological plausibility and interpretability. In addition, insufficient sample size may lead to computational problems, inaccurate estimates of parameters and non-generalizable results. These problems may be solved by selecting sparse subsets of variables, i.e. obtaining sparse loadings in the linear combinations of variables of each type. In this paper we present Sparse Canonical Correlation Analysis (SCCA) which examines the relationships between two types of variables and provides sparse solutions that include only small subsets of variables of each type by maximizing the correlation between the subsets of variables of different types while performing variable selection. We also present an extension of SCCA - adaptive SCCA. We evaluate their properties using simulated data and illustrate practical use by applying both methods to the study of natural variation in human gene expression.

Keywords: canonical correlation; sparseness; data integration

About the article

Published Online: 2009-01-06

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 8, Issue 1, Pages 1–34, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1406.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaolan Gu and Qiusheng Wang
Communications in Statistics - Simulation and Computation, 2019, Page 1
Ignacio González, Kim-Anh Lê Cao, Melissa J Davis, and Sébastien Déjean
BioData Mining, 2012, Volume 5, Number 1
Qiugang Lu, Benben Jiang, R. Bhushan Gopaluni, Philip D. Loewen, and Richard D. Braatz
Journal of Process Control, 2018, Volume 71, Page 90
Su-Ping Deng, Wenxing Hu, Vince D. Calhoun, and Yu-Ping Wang
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, Page 1
Nimrod Rappoport and Ron Shamir
Nucleic Acids Research, 2018
Eun Jeong Min, Sandra E Safo, Qi Long, and Oliver Stegle
Bioinformatics, 2018
Md. Ashad Alam, Hui-Yi Lin, Hong-Wen Deng, Vince D. Calhoun, and Yu-Ping Wang
Journal of Neuroscience Methods, 2018
Kyunghun Kang, Kichang Kwak, Uicheul Yoon, and Jong-Min Lee
Scientific Reports, 2018, Volume 8, Number 1
Pooja Jain, Paolo Vineis, Benoît Liquet, Jelle Vlaanderen, Barbara Bodinier, Karin van Veldhoven, Manolis Kogevinas, Toby J Athersuch, Laia Font-Ribera, Cristina M Villanueva, Roel Vermeulen, and Marc Chadeau-Hyam
Journal of Epidemiology and Community Health, 2018, Volume 72, Number 7, Page 564
Prabhakar Chalise, Anthony Batzler, Ryan Abo, Liewei Wang, and Brooke L. Fridley
OMICS: A Journal of Integrative Biology, 2012, Volume 16, Number 7-8, Page 363
IEEE Transactions on Medical Imaging, 2018, Volume 37, Number 8, Page 1761
Matthew Sutton, Rodolphe Thiébaut, and Benoît Liquet
Statistics in Medicine, 2018
Md. Ashad Alam, Kenji Fukumizu, and Yu-Ping Wang
Neurocomputing, 2018, Volume 304, Page 12
Nandakishor Desai, Abd-Krim Seghouane, and Marimuthu Palaniswami
Pattern Recognition Letters, 2018
Yang Li, Wenming Zheng, Zhen Cui, Yuan Zong, and Sheng Ge
Neural Processing Letters, 2018
Ganna Leonenko, Arianna Di Florio, Judith Allardyce, Liz Forty, Sarah Knott, Lisa Jones, Katherine Gordon-Smith, Michael J. Owen, Ian Jones, James Walters, Nick Craddock, Michael C. O'Donovan, and Valentina Escott-Price
American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018
Md. Ashad Alam, Vince D. Calhoun, and Yu-Ping Wang
Computational Statistics & Data Analysis, 2018
Lei Du, Kefei Liu, Tuo Zhang, Xiaohui Yao, Jingwen Yan, Shannon L Risacher, Junwei Han, Lei Guo, Andrew J Saykin, and Li Shen
Bioinformatics, 2018, Volume 34, Number 2, Page 278
Yueh-Yun Chi
Wiley Interdisciplinary Reviews: Computational Statistics, 2012, Volume 4, Number 1, Page 35
Wenxing Hu, Dongdong Lin, Shaolong Cao, Jing Yu Liu, Jiayu Chen, Vince Calhoun, and Yuping Wang
IEEE Transactions on Biomedical Engineering, 2017, Page 1
Christof Seiler, Tamar Green, David Hong, Lindsay Chromik, Lynne Huffman, Susan Holmes, and Allan L. Reiss
Neuroinformatics, 2017
Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, and Li Shen
Scientific Reports, 2017, Volume 7, Number 1
Zhi-Xu Li, Qiang Yang, An Liu, Guan-Feng Liu, Jia Zhu, Jia-Jie Xu, Kai Zheng, and Min Zhang
Journal of Computer Science and Technology, 2017, Volume 32, Number 5, Page 858
Hyemin Jang, Hunki Kwon, Jin-Ju Yang, Jinwoo Hong, Yeshin Kim, Ko Woon Kim, Jin San Lee, Young Kyoung Jang, Sung Tae Kim, Kyung Han Lee, Jae Hong Lee, Duk L. Na, Sang Won Seo, Hee Jin Kim, and Jong-Min Lee
Scientific Reports, 2017, Volume 7, Number 1
Huawen Liu, Lin Liu, Thuc Duy Le, Ivan Lee, Shiliang Sun, and Jiuyong Li
IEEE Transactions on Multimedia, 2017, Volume 19, Number 8, Page 1848
Ali-Reza Mohammadi-Nejad, Gholam-Ali Hossein-Zadeh, and Hamid Soltanian-Zadeh
IEEE Transactions on Medical Imaging, 2017, Volume 36, Number 7, Page 1438
Jinhua Sheng
International Journal of Imaging Systems and Technology, 2017, Volume 27, Number 2, Page 162
Pekka Marttinen, Matti Pirinen, Antti-Pekka Sarin, Jussi Gillberg, Johannes Kettunen, Ida Surakka, Antti J. Kangas, Pasi Soininen, Paul O’Reilly, Marika Kaakinen, Mika Kähönen, Terho Lehtimäki, Mika Ala-Korpela, Olli T. Raitakari, Veikko Salomaa, Marjo-Riitta Järvelin, Samuli Ripatti, and Samuel Kaski
Bioinformatics, 2014, Volume 30, Number 14, Page 2026
Dongdong Lin, Vince D. Calhoun, and Yu-Ping Wang
Medical Image Analysis, 2014, Volume 18, Number 6, Page 891
Silvia Pineda, Francisco X. Real, Manolis Kogevinas, Alfredo Carrato, Stephen J. Chanock, Núria Malats, Kristel Van Steen, and David McConkey
PLOS Genetics, 2015, Volume 11, Number 12, Page e1005689
Kosuke Yoshida, Junichiro Yoshimoto, and Kenji Doya
BMC Bioinformatics, 2017, Volume 18, Number 1
Marc Chadeau-Hyam, Gianluca Campanella, Thibaut Jombart, Leonardo Bottolo, Lutzen Portengen, Paolo Vineis, Benoit Liquet, and Roel C.H. Vermeulen
Environmental and Molecular Mutagenesis, 2013, Volume 54, Number 7, Page 542
Brian B. Avants, David J. Libon, Katya Rascovsky, Ashley Boller, Corey T. McMillan, Lauren Massimo, H. Branch Coslett, Anjan Chatterjee, Rachel G. Gross, and Murray Grossman
NeuroImage, 2014, Volume 84, Page 698
Jose A. Seoane, Colin Campbell, Ian N. M. Day, Juan P. Casas, Tom R. Gaunt, and Christos A. Ouzounis
PLoS Computational Biology, 2014, Volume 10, Number 10, Page e1003876
Juho Rousu, Daniel D. Agranoff, Olugbemiro Sodeinde, John Shawe-Taylor, Delmiro Fernandez-Reyes, and Nathan D. Price
PLoS Computational Biology, 2013, Volume 9, Number 4, Page e1003018
Claudia Grellmann, Sebastian Bitzer, Jane Neumann, Lars T. Westlye, Ole A. Andreassen, Arno Villringer, and Annette Horstmann
NeuroImage, 2015, Volume 107, Page 289
Sijia Huang, Kumardeep Chaudhary, and Lana X. Garmire
Frontiers in Genetics, 2017, Volume 8
Idowu O. Ayodeji and Titilola O. Obilade
Communications in Statistics - Theory and Methods, 2017, Page 0
Loris De Cecco, Marco Giannoccaro, Edoardo Marchesi, Paolo Bossi, Federica Favales, Laura Locati, Lisa Licitra, Silvana Pilotti, and Silvana Canevari
Genes, 2017, Volume 8, Number 1, Page 35
Cemal Okan Sakar and Olcay Kursun
IEEE Transactions on Neural Networks and Learning Systems, 2017, Volume 28, Number 1, Page 164
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander, and Vladimir Brusic
PLoS ONE, 2012, Volume 7, Number 4, Page e35236
Jingjie Yan, Wenming Zheng, Qinyu Xu, Guanming Lu, Haibo Li, and Bei Wang
IEEE Transactions on Multimedia, 2016, Volume 18, Number 7, Page 1319
Jia Chen and Ioannis D. Schizas
IEEE Transactions on Signal Processing, 2016, Volume 64, Number 3, Page 688
Chongliang Luo, Jin Liu, Dipak K. Dey, and Kun Chen
Biostatistics, 2016, Volume 17, Number 3, Page 468
Xin-Guo Liu, Xue-Feng Wang, and Wei-Guo Wang
SIAM Journal on Matrix Analysis and Applications, 2015, Volume 36, Number 4, Page 1489
Zhao Zhang, Mingbo Zhao, and Tommy W.S. Chow
IEEE Transactions on Knowledge and Data Engineering, 2013, Volume 25, Number 10, Page 2192
Maria J. Rosa, Mitul A. Mehta, Emilio M. Pich, Celine Risterucci, Fernando Zelaya, Antje A. T. S. Reinders, Steve C. R. Williams, Paola Dazzan, Orla M. Doyle, and Andre F. Marquand
Frontiers in Neuroscience, 2015, Volume 9
Ines Wilms and Christophe Croux
Biometrical Journal, 2015, Volume 57, Number 5, Page 834
Oliver P. Günther, Heesun Shin, Raymond T. Ng, W. Robert McMaster, Bruce M. McManus, Paul A. Keown, Scott. J. Tebbutt, and Kim-Anh Lê Cao
OMICS: A Journal of Integrative Biology, 2014, Volume 18, Number 11, Page 682
Yusuke Fujiwara, Yoichi Miyawaki, and Yukiyasu Kamitani
Neural Computation, 2013, Volume 25, Number 4, Page 979
Brian McWilliams and Giovanni Montana
Statistical Analysis and Data Mining, 2012, Volume 5, Number 4, Page 304
Xi Chen and Han Liu
Statistics in Biosciences, 2012, Volume 4, Number 1, Page 3
Ana Conesa, José M. Prats-Montalbán, Sonia Tarazona, Ma José Nueda, and Alberto Ferrer
Chemometrics and Intelligent Laboratory Systems, 2010, Volume 104, Number 1, Page 101
Maria Vounou, Thomas E. Nichols, and Giovanni Montana
NeuroImage, 2010, Volume 53, Number 3, Page 1147
Xiaohong Chen, Songcan Chen, and Hui Xue
Applied Mathematics and Computation, 2011, Volume 217, Number 22, Page 9041

Comments (0)

Please log in or register to comment.
Log in