Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year

IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

See all formats and pricing
More options …
Volume 8, Issue 1 (Jun 2009)


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data

Daniela M Witten / Robert J. Tibshirani
Published Online: 2009-06-09 | DOI: https://doi.org/10.2202/1544-6115.1470

In recent work, several authors have introduced methods for sparse canonical correlation analysis (sparse CCA). Suppose that two sets of measurements are available on the same set of observations. Sparse CCA is a method for identifying sparse linear combinations of the two sets of variables that are highly correlated with each other. It has been shown to be useful in the analysis of high-dimensional genomic data, when two sets of assays are available on the same set of samples. In this paper, we propose two extensions to the sparse CCA methodology. (1) Sparse CCA is an unsupervised method; that is, it does not make use of outcome measurements that may be available for each observation (e.g., survival time or cancer subtype). We propose an extension to sparse CCA, which we call sparse supervised CCA, which results in the identification of linear combinations of the two sets of variables that are correlated with each other and associated with the outcome. (2) It is becoming increasingly common for researchers to collect data on more than two assays on the same set of samples; for instance, SNP, gene expression, and DNA copy number measurements may all be available. We develop sparse multiple CCA in order to extend the sparse CCA methodology to the case of more than two data sets. We demonstrate these new methods on simulated data and on a recently published and publicly available diffuse large B-cell lymphoma data set.

Keywords: sparse canonical correlation analysis; gene expression; microarray; DNA copy number; CGH; SNP; lasso; fused lasso

About the article

Published Online: 2009-06-09

Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1470.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Canaan M. Whitfield-Cargile, Noah D. Cohen, Kejun He, Ivan Ivanov, Jennifer S. Goldsby, Ana Chamoun-Emanuelli, Brad R. Weeks, Laurie A. Davidson, and Robert S. Chapkin
Scientific Reports, 2017
Lei Du, Kefei Liu, Xiaohui Yao, Jingwen Yan, Shannon L. Risacher, Junwei Han, Lei Guo, Andrew J. Saykin, and Li Shen
Scientific Reports, 2017, Volume 7, Number 1
Genevera I. Allen
Statistical Modelling: An International Journal, 2017, Volume 17, Number 4-5, Page 332
Fani Deligianni, Charence Wong, Benny Lo, and Guang-Zhong Yang
Information Fusion, 2017
Hyemin Jang, Hunki Kwon, Jin-Ju Yang, Jinwoo Hong, Yeshin Kim, Ko Woon Kim, Jin San Lee, Young Kyoung Jang, Sung Tae Kim, Kyung Han Lee, Jae Hong Lee, Duk L. Na, Sang Won Seo, Hee Jin Kim, and Jong-Min Lee
Scientific Reports, 2017, Volume 7, Number 1
Naifei Zhao, Qingsong Xu, and Hong Wang
IEEE Access, 2017, Volume 5, Page 14047
Édith Le Floch, Vincent Guillemot, Vincent Frouin, Philippe Pinel, Christophe Lalanne, Laura Trinchera, Arthur Tenenhaus, Antonio Moreno, Monica Zilbovicius, Thomas Bourgeron, Stanislas Dehaene, Bertrand Thirion, Jean-Baptiste Poline, and Édouard Duchesnay
NeuroImage, 2012, Volume 63, Number 1, Page 11
Vinicius Tragante, Jason H. Moore, and Folkert W. Asselbergs
Genetic Epidemiology, 2014, Volume 38, Number 4, Page 275
Bruna Mendonça Alves, Alberto Cargnelutti Filho, Marcos Toebe, and Cláudia Burin
Journal of Cereal Science, 2016, Volume 70, Page 229
José A. Seoane, Ian N. M. Day, Tom R. Gaunt, and Colin Campbell
Bioinformatics, 2014, Volume 30, Number 6, Page 838
Wenting Wang, Veerabhadran Baladandayuthapani, Jeffrey S. Morris, Bradley M. Broom, Ganiraju Manyam, and Kim-Anh Do
Bioinformatics, 2013, Volume 29, Number 2, Page 149
Pekka Marttinen, Matti Pirinen, Antti-Pekka Sarin, Jussi Gillberg, Johannes Kettunen, Ida Surakka, Antti J. Kangas, Pasi Soininen, Paul O’Reilly, Marika Kaakinen, Mika Kähönen, Terho Lehtimäki, Mika Ala-Korpela, Olli T. Raitakari, Veikko Salomaa, Marjo-Riitta Järvelin, Samuli Ripatti, and Samuel Kaski
Bioinformatics, 2014, Volume 30, Number 14, Page 2026
Sanvesh Srivastava, Wenyi Wang, Ganiraju Manyam, Carlos Ordonez, and Veerabhadran Baladandayuthapani
EURASIP Journal on Bioinformatics and Systems Biology, 2013, Volume 2013, Number 1
Monika Piwowar, Wiktor Jurkowski, and Enrique Hernandez-Lemus
PLOS ONE, 2015, Volume 10, Number 6, Page e0128854
Fani Deligianni, David W. Carmichael, Gary H. Zhang, Chris A. Clark, Jonathan D. Clayden, and Daniele Marinazzo
PLOS ONE, 2016, Volume 11, Number 4, Page e0153404
Dongdong Lin, Vince D. Calhoun, and Yu-Ping Wang
Medical Image Analysis, 2014, Volume 18, Number 6, Page 891
Brian B. Avants, David J. Libon, Katya Rascovsky, Ashley Boller, Corey T. McMillan, Lauren Massimo, H. Branch Coslett, Anjan Chatterjee, Rachel G. Gross, and Murray Grossman
NeuroImage, 2014, Volume 84, Page 698
Dongdong Lin, Hongbao Cao, Vince D. Calhoun, and Yu-Ping Wang
Journal of Neuroscience Methods, 2014, Volume 237, Page 69
Parminder K. Mankoo, Ronglai Shen, Nikolaus Schultz, Douglas A. Levine, Chris Sander, and Sumitra Deb
PLoS ONE, 2011, Volume 6, Number 11, Page e24709
Ting Wang, Jin Gu, Jun Yuan, Ran Tao, Yanda Li, and Shao Li
Molecular BioSystems, 2013, Volume 9, Number 7, Page 1822
Claudia Grellmann, Sebastian Bitzer, Jane Neumann, Lars T. Westlye, Ole A. Andreassen, Arno Villringer, and Annette Horstmann
NeuroImage, 2015, Volume 107, Page 289
Sijia Huang, Kumardeep Chaudhary, and Lana X. Garmire
Frontiers in Genetics, 2017, Volume 8
Xiao Fu, Kejun Huang, Mingyi Hong, Nicholas D. Sidiropoulos, and Anthony Man-Cho So
IEEE Transactions on Signal Processing, 2017, Volume 65, Number 16, Page 4150
Xuebei An, Jianhua Hu, and Kim-Anh Do
Bioinformatics, 2016, Volume 32, Number 21, Page 3279
Carles Hernandez-Ferrer, Carlos Ruiz-Arenas, Alba Beltran-Gomila, and Juan R. González
BMC Bioinformatics, 2017, Volume 18, Number 1
Dhivyaa Rajasundaram, Jean-Luc Runavot, Xiaoyuan Guo, William G. T. Willats, Frank Meulewaeter, Joachim Selbig, and David D. Fang
PLoS ONE, 2014, Volume 9, Number 11, Page e112168
Bayarbaatar Amgalan, Hyunju Lee, and Frank Emmert-Streib
PLoS ONE, 2014, Volume 9, Number 8, Page e104993
Jose A. Seoane, Colin Campbell, Ian N. M. Day, Juan P. Casas, Tom R. Gaunt, and Christos A. Ouzounis
PLoS Computational Biology, 2014, Volume 10, Number 10, Page e1003876
Bin Li, Hyunjin Shin, Georgy Gulbekyan, Olga Pustovalova, Yuri Nikolsky, Andrew Hope, Marina Bessarabova, Matthew Schu, Elona Kolpakova-Hart, David Merberg, Andrew Dorner, William L. Trepicchio, and Nikolas K. Haass
PLOS ONE, 2015, Volume 10, Number 6, Page e0130700
Ronglai Shen, Qianxing Mo, Nikolaus Schultz, Venkatraman E. Seshan, Adam B. Olshen, Jason Huse, Marc Ladanyi, Chris Sander, and Vladimir Brusic
PLoS ONE, 2012, Volume 7, Number 4, Page e35236
Guoxu Zhou, Andrzej Cichocki, Yu Zhang, and Danilo P. Mandic
IEEE Transactions on Neural Networks and Learning Systems, 2016, Volume 27, Number 11, Page 2426
Jinyu Chen and Shihua Zhang
Frontiers of Computer Science, 2017, Volume 11, Number 3, Page 392
Hong-Kun Ji, Quan-Sen Sun, Yun-Hao Yuan, Ze-Xuan Ji, Guo-Qing Zhang, and Lei Feng
Multimedia Tools and Applications, 2016
Hong-Kun Ji, Quan-Sen Sun, Yun-Hao Yuan, and Ze-Xuan Ji
Journal of Visual Communication and Image Representation, 2016, Volume 40, Page 393
Nimisha Chaturvedi, Renée X. de Menezes, and Jelle J. Goeman
Biometrical Journal, 2017, Volume 59, Number 1, Page 145
Jia Chen and Ioannis D. Schizas
IEEE Transactions on Signal Processing, 2016, Volume 64, Number 3, Page 688
Ruoqing Zhu, Qing Zhao, Hongyu Zhao, and Shuangge Ma
Biostatistics, 2016, Volume 17, Number 4, Page 605
Chongliang Luo, Jin Liu, Dipak K. Dey, and Kun Chen
Biostatistics, 2016, Volume 17, Number 3, Page 468
Karl B. Gregory, Amin A. Momin, Kevin R. Coombes, and Veerabhadran Baladandayuthapani
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, Volume 11, Number 6, Page 984
Delin Chu, Li-Zhi Liao, Michael K. Ng, and Xiaowei Zhang
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, Volume 35, Number 12, Page 3050
Jianyong Sun and Simeon Keates
IEEE Transactions on Neural Networks and Learning Systems, 2013, Volume 24, Number 12, Page 1909
Chun-Hou Zheng, Lei Zhang, V. T. Ng, Chi Keung Shiu, and De-Shuang Huang
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, Volume 8, Number 6, Page 1592
Maria J. Rosa, Mitul A. Mehta, Emilio M. Pich, Celine Risterucci, Fernando Zelaya, Antje A. T. S. Reinders, Steve C. R. Williams, Paola Dazzan, Orla M. Doyle, and Andre F. Marquand
Frontiers in Neuroscience, 2015, Volume 9
Jingjie Yan, Wenming Zheng, Xiaoyan Zhou, and Zhijian Zhao
IEEE Signal Processing Letters, 2012, Volume 19, Number 1, Page 51
Brian Geier, Dias Kurmashev, Raushan T. Kurmasheva, and Peter J. Houghton
Frontiers in Oncology, 2015, Volume 5
Tomasz Waller, Tomasz Gubała, Krzysztof Sarapata, Monika Piwowar, and Wiktor Jurkowski
BioData Mining, 2015, Volume 8, Number 1
Federico Mattiello, Olivier Thas, and Bie Verbist
Journal of Biopharmaceutical Statistics, 2016, Volume 26, Number 3, Page 534
Pedro J. Leitão, Marcel Schwieder, Stefan Suess, Inês Catry, Edward J. Milton, Francisco Moreira, Patrick E. Osborne, Manuel J. Pinto, Sebastian van der Linden, Patrick Hostert, and David Warton
Methods in Ecology and Evolution, 2015, Volume 6, Number 7, Page 764
Fani Deligianni, Maria Centeno, David W. Carmichael, and Jonathan D. Clayden
Frontiers in Neuroscience, 2014, Volume 8
Ross Iaci and T.N. Sriram
Journal of Multivariate Analysis, 2013, Volume 117, Page 281
Xi Chen and Han Liu
Statistics in Biosciences, 2012, Volume 4, Number 1, Page 3
Prabhakar Chalise and Brooke L. Fridley
Computational Statistics & Data Analysis, 2012, Volume 56, Number 2, Page 245

Comments (0)

Please log in or register to comment.
Log in