Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

6 Issues per year

IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 9, Issue 1


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Network Enrichment Analysis in Complex Experiments

Ali Shojaie / George Michailidis
Published Online: 2010-05-22 | DOI: https://doi.org/10.2202/1544-6115.1483

Cellular functions of living organisms are carried out through complex systems of interacting components. Including such interactions in the analysis, and considering sub-systems defined by biological pathways instead of individual components (e.g. genes), can lead to new findings about complex biological mechanisms. Networks are often used to capture such interactions and can be incorporated in models to improve the efficiency in estimation and inference. In this paper, we propose a model for incorporating external information about interactions among genes (proteins/metabolites) in differential analysis of gene sets. We exploit the framework of mixed linear models and propose a flexible inference procedure for analysis of changes in biological pathways. The proposed method facilitates the analysis of complex experiments, including multiple experimental conditions and temporal correlations among observations. We propose an efficient iterative algorithm for estimation of the model parameters and show that the proposed framework is asymptotically robust to the presence of noise in the network information. The performance of the proposed model is illustrated through the analysis of gene expression data for environmental stress response (ESR) in yeast, as well as simulated data sets.

Keywords: gene network; enrichment analysis; gene set analysis; complex experiments; spatio-temporal model; mixed linear model; systems biology

About the article

Published Online: 2010-05-22

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 9, Issue 1, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1483.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alicia Amadoz, Marta R Hidalgo, Cankut Çubuk, José Carbonell-Caballero, and Joaquín Dopazo
Briefings in Bioinformatics, 2018
Akash K. Kaushik and Ralph J. DeBerardinis
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2018
Tin Nguyen, Cristina Mitrea, and Sorin Draghici
Current Protocols in Bioinformatics, 2018, Volume 61, Number 1, Page 8.25.1
Yang Zhang, Z. Lewis Liu, and Mingzhou Song
Nucleic Acids Research, 2015, Volume 43, Number 9, Page 4393
Joanna Zyla, Michal Marczyk, January Weiner, and Joanna Polanska
BMC Bioinformatics, 2017, Volume 18, Number 1
Frank Emmert-Streib, Galina V. Glazko, and Fran Lewitter
PLoS Computational Biology, 2011, Volume 7, Number 5, Page e1002053
Stephen B. Keysar, David P. Astling, Ryan T. Anderson, Brian W. Vogler, Daniel W. Bowles, J. Jason Morton, Jeramiah J. Paylor, Magdalena J. Glogowska, Phuong N. Le, Justin R. Eagles-Soukup, Severine L. Kako, Sarah M. Takimoto, Daniel B. Sehrt, Adrian Umpierrez, Morgan A. Pittman, Sarah M. Macfadden, Ryan M. Helber, Scott Peterson, Diana F. Hausman, Sherif Said, Ted H. Leem, Julie A. Goddard, John J. Arcaroli, Wells A. Messersmith, William A. Robinson, Fred R. Hirsch, Marileila Varella-Garcia, David Raben, Xiao-Jing Wang, John I. Song, Aik-Choon Tan, and Antonio Jimeno
Molecular Oncology, 2013, Volume 7, Number 4, Page 776
Jing Ma, Ali Shojaie, and George Michailidis
Bioinformatics, 2016, Volume 32, Number 20, Page 3165
Christoph Ogris, Dimitri Guala, Thomas Helleday, and Erik L. L. Sonnhammer
Nucleic Acids Research, 2017, Volume 45, Number 2, Page e8
Yuping Zhang, M. Henry Linder, Ali Shojaie, Zhengqing Ouyang, Ronglai Shen, Keith A. Baggerly, Veerabhadran Baladandayuthapani, and Hongyu Zhao
Statistics in Biosciences, 2017
Ali Shojaie, Alexandra Jauhiainen, Michael Kallitsis, George Michailidis, and Alberto de la Fuente
PLoS ONE, 2014, Volume 9, Number 2, Page e82393
Yize Zhao, Matthias Chung, Brent A. Johnson, Carlos S. Moreno, and Qi Long
Journal of the American Statistical Association, 2016, Volume 111, Number 516, Page 1427
Mirko Signorelli, Veronica Vinciotti, and Ernst C. Wit
BMC Bioinformatics, 2016, Volume 17, Number 1
Sen Zhao and Ali Shojaie
Biometrics, 2016, Volume 72, Number 2, Page 484
Donatello Telesca, Peter Müller, Steven M. Kornblau, Marc A. Suchard, and Yuan Ji
Journal of the American Statistical Association, 2012, Volume 107, Number 500, Page 1372
Tomás Eduardo Ceremuga, Stephanie Martinson, Jason Washington, Robert Revels, Jessica Wojcicki, Damali Crawford, Robert Edwards, Joshua Luke Kemper, William Luke Townsend, Geno M. Herron, George Allen Ceremuga, Gina Padron, and Michael Bentley
The Scientific World Journal, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.
Log in