Jump to ContentJump to Main Navigation
Show Summary Details

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year


IMPACT FACTOR increased in 2015: 1.265
5-year IMPACT FACTOR: 1.423
Rank 42 out of 123 in category Statistics & Probability in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.954
Source Normalized Impact per Paper (SNIP) 2015: 0.554
Impact per Publication (IPP) 2015: 1.061

Mathematical Citation Quotient (MCQ) 2015: 0.06

Online
ISSN
1544-6115
See all formats and pricing

 



Assessment of LD Matrix Measures for the Analysis of Biological Pathway Association

David R. Crosslin
  • University of Washington
/ Xuejun Qin
  • Duke University Medical Center
/ Elizabeth R. Hauser
  • Duke University Medical Center
Published Online: 2010-10-02 | DOI: https://doi.org/10.2202/1544-6115.1561

Complex diseases will have multiple functional sites, and it will be invaluable to understand the cross-locus interaction in terms of linkage disequilibrium (LD) between those sites (epistasis) in addition to the haplotype-LD effects. We investigated the statistical properties of a class of matrix-based statistics to assess this epistasis. These statistical methods include two LD contrast tests (Zaykin et al., 2006) and partial least squares regression (Wang et al., 2008). To estimate Type 1 error rates and power, we simulated multiple two-variant disease models using the SIMLA software package. SIMLA allows for the joint action of up to two disease genes in the simulated data with all possible multiplicative interaction effects between them. Our goal was to detect an interaction between multiple disease-causing variants by means of their linkage disequilibrium (LD) patterns with other markers. We measured the effects of marginal disease effect size, haplotype LD, disease prevalence and minor allele frequency have on cross-locus interaction (epistasis).In the setting of strong allele effects and strong interaction, the correlation between the two disease genes was weak (r = 0.2). In a complex system with multiple correlations (both marginal and interaction), it was difficult to determine the source of a significant result. Despite these complications, the partial least squares and modified LD contrast methods maintained adequate power to detect the epistatic effects; however, for many of the analyses we often could not separate interaction from a strong marginal effect. While we did not exhaust the entire parameter space of possible models, we do provide guidance on the effects that population parameters have on cross-locus interaction.

Keywords: epistasis; linkage disequilibrium; complex disease; cardiovascular disease


Published Online: 2010-10-02


Citation Information: Statistical Applications in Genetics and Molecular Biology. Volume 9, Issue 1, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1561, October 2010

Comments (0)

Please log in or register to comment.