Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 9, Issue 1


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Classification of Genomic Sequences via Wavelet Variance and a Self-Organizing Map with an Application to Mitochondrial DNA

Agnieszka E Jach / Juan M Marín
Published Online: 2010-07-02 | DOI: https://doi.org/10.2202/1544-6115.1562

We present a new methodology for discriminating genomic symbolic sequences, which combines wavelet analysis and a self-organizing map algorithm. Wavelets are used to extract variation across various scales in the oligonucleotide patterns of a sequence. The variation is quantified by the estimated wavelet variance, which yields a feature vector. Feature vectors obtained from many genomic sequences, possibly of different lengths, are then classified with a nonparametric self-organizing map scheme. When applied to nearly 200 entire mitochondrial DNA sequences, or their fragments, the method predicts species taxonomic group membership very well, and allows the results to be visualized. When only thousands of nucleotides are available, wavelet-based feature vectors of short oligonucleotide patterns are more efficient in discrimination than frequency-based feature vectors of long patterns. This new data analysis strategy could be extended to numeric genomic data. The routines needed to perform the computations are readily available in two packages of software R.

Keywords: oligonucleotide patterns; binary sequences; MODWT; estimated wavelet variance; supervised Kohonen’s map

About the article

Published Online: 2010-07-02

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 9, Issue 1, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1562.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shengkun Xie and Sridhar Krishnan
Medical & Biological Engineering & Computing, 2013, Volume 51, Number 1-2, Page 49

Comments (0)

Please log in or register to comment.
Log in