Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year


IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 10, Issue 1

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Modeling Read Counts for CNV Detection in Exome Sequencing Data

Michael I. Love / Alena Myšičková / Ruping Sun / Vera Kalscheuer / Martin Vingron / Stefan A. Haas
Published Online: 2011-11-08 | DOI: https://doi.org/10.2202/1544-6115.1732

Varying depth of high-throughput sequencing reads along a chromosome makes it possible to observe copy number variants (CNVs) in a sample relative to a reference. In exome and other targeted sequencing projects, technical factors increase variation in read depth while reducing the number of observed locations, adding difficulty to the problem of identifying CNVs. We present a hidden Markov model for detecting CNVs from raw read count data, using background read depth from a control set as well as other positional covariates such as GC-content. The model, exomeCopy, is applied to a large chromosome X exome sequencing project identifying a list of large unique CNVs. CNVs predicted by the model and experimentally validated are then recovered using a cross-platform control set from publicly available exome sequencing data. Simulations show high sensitivity for detecting heterozygous and homozygous CNVs, outperforming normalization and state-of-the-art segmentation methods.

Keywords: exorne sequencing; targeted sequencing; CNV; copy number variant; HMM; hidden Markov model

We thank our collaborators on the XLID project, Prof. Dr. H.-Hilger Ropers, Wei Chen, Hao Hu, Reinhard Ullmann and the EUROMRX consortium for providing the XLID data, validation of CNVs and for helpful discussion. We also thank Ho-Ryun Chung for suggestions. Part of this work was financed by the European Union’s Seventh Framework Program under grant agreement number 241995, project GENCODYS.

  • 1000 Genomes Project Consortium (2010): “A map of human genome variation from population-scale sequencing,” Nature, 467, 1061–1073.Google Scholar

  • Alkan, C., J. M. Kidd, T. Marques-Bonet, G. Aksay, F. Antonacci, F. Hormozdiari, J. O. Kitzman, C. Baker, M. Malig, O. Mutlu, S. C. Sahinalp, R. A. Gibbs, and E. E. Eichler (2009): “Personalized copy number and segmental duplication maps using next-generation sequencing,” Nature Genetics, 41, 1061–1067.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Anders, S. and W. Huber (2010): “Differential expression analysis for sequence count data.” Genome biology, 11, R106+.CrossrefGoogle Scholar

  • Benjamini, Y. and T. P. Speed (2011): “Estimation and correction for GC-content bias in high throughput sequencing,” Technical report, University of California at Berkeley.Google Scholar

  • Bliss, C. I. and R. A. Fisher (1953): “Fitting the Negative Binomial Distribution to Biological Data,” Biometrics, 9.Google Scholar

  • Boeva, V., A. Zinovyev, K. Bleakley, J.-P. Vert, I. Janoueix-Lerosey, O. Delattre, and E. Barillot (2011): “Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization,” Bioinformatics, 27, 268–269.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Campbell, P. J., P. J. Stephens, E. D. Pleasance, S. O’Meara, H. Li, T. Santarius, L. A. Stebbings, C. Leroy, S. Edkins, C. Hardy, J. W. Teague, A. Menzies, I. Goodhead, D. J. Turner, C. M. Clee, M. A. Quail, A. Cox, C. Brown, R. Durbin, M. E. Hurles, P. A. W. Edwards, G. R. Bignell, M. R. Stratton, and P. A. Futreal (2008): “Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing,” Nature Genetics, 40, 722–729.CrossrefWeb of SciencePubMedGoogle Scholar

  • Chiang, D. Y., G. Getz, D. B. Jaffe, M. J. T. O’Kelly, X. Zhao, S. L. Carter, C. Russ, C. Nusbaum, M. Meyerson, and E. S. Lander (2008): “High-resolution mapping of copy-number alterations with massively parallel sequencing,” Nature Methods, 6, 99–103.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Conrad, D. F., D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang, J. Aerts, T. D. Andrews, C. Barnes, P. Campbell, T. Fitzgerald, M. Hu, C. H. Ihm, K. Kristiansson, D. G. MacArthur, J. R. MacDonald, I. Onyiah, A. W. Pang, S. Robson, K. Stirrups, A. Valsesia, K. Walter, J. Wei, C. Tyler-Smith, N. P. Carter, C. Lee, S. W. Scherer, and M. E. Hurles (2010): “Origins and functional impact of copy number variation in the human genome,” Nature, 464, 704–712.Web of ScienceGoogle Scholar

  • Fridlyand, J. (2004): “Hidden Markov models approach to the analysis of array CGH data,” Journal of Multivariate Analysis, 90, 132–153.Google Scholar

  • Gentleman, R., V. Carey, D. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Yang, and J. Zhang (2004): “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, 5, R80+.CrossrefGoogle Scholar

  • Glessner, J. T., K. Wang, G. Cai, O. Korvatska, C. E. Kim, S. Wood, H. Zhang, A. Estes, C. W. Brune, J. P. Bradfield, M. Imielinski, E. C. Frackelton, J. Reichert, E. L. Crawford, J. Munson, P. M. A. Sleiman, R. Chiavacci, K. Annaiah, K. Thomas, C. Hou, W. Glaberson, J. Flory, F. Otieno, M. Garris, L. Soorya, L. Klei, J. Piven, K. J. Meyer, E. Anagnostou, T. Sakurai, R. M. Game, D. S. Rudd, D. Zurawiecki, C. J. McDougle, L. K. Davis, J. Miller, D. J. Posey, S. Michaels, A. Kolevzon, J. M. Silverman, R. Bernier, S. E. Levy, R. T. Schultz, G. Dawson, T. Owley, W. M. McMahon, T. H. Wassink, J. A. Sweeney, J. I. Nurnberger, H. Coon, J. S. Sutcliffe, N. J. Minshew, S. F. A. Grant, M. Bucan, E. H. Cook, J. D. Buxbaum, B. Devlin, G. D. Schellenberg, and H. Hakonarson (2009): “Autism genome-wide copy number variation reveals ubiquitin and neuronal genes,” Nature, 459, 569–573.Web of ScienceGoogle Scholar

  • Gonzalez, E., H. Kulkarni, H. Bolivar, A. Mangano, R. Sanchez, G. Catano, R. J. Nibbs, B. I. Freedman, M. P. Quinones, M. J. Bamshad, K. K. Murthy, B. H. Rovin, W. Bradley, R. A. Clark, S. A. Anderson, R. J. O’Connell, B. K. Agan, S. S. Ahuja, R. Bologna, L. Sen, M. J. Dolan, and S. K. Ahuja (2005): “The Influence of CCL3L1 Gene-Containing Segmental Duplications on HIV-1/AIDS Susceptibility,” Science, 307, 1434–1440.Google Scholar

  • Harismendy, O., P. Ng, R. Strausberg, X. Wang, T. Stockwell, K. Beeson, N. Schork, S. Murray, E. Topol, S. Levy, and K. Frazer (2009): “Evaluation of next generation sequencing platforms for population targeted sequencing studies,” Genome Biology, 10, R32+.Web of ScienceCrossrefGoogle Scholar

  • Hedges, D. J., T. Guettouche, S. Yang, G. Bademci, A. Diaz, A. Andersen, W. F. Hulme, S. Linker, A. Mehta, Y. J. K. Edwards, G. W. Beecham, E. R. Martin, M. A. Pericak-Vance, S. Zuchner, J. M. Vance, and J. R. Gilbert (2011): “Comparison of Three Targeted Enrichment Strategies on the SOLiD Sequencing Platform,” PLoS ONE, 6, e18595+.CrossrefWeb of ScienceGoogle Scholar

  • Herman, D. S., G. K. Hovingh, O. Iartchouk, H. L. Rehm, R. Kucherlapati, J. G. Seidman, and C. E. Seidman (2009): “Filter-based hybridization capture of subgenomes enables resequencing and copy-number detection.” Nature methods, 6, 507–510.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Ivakhno, S., T. Royce, A. J. Cox, D. J. Evers, R. K. Cheetham, and S. Tavaré (2010): “CNAsega novel framework for identification of copy number changes in cancer from second-generation sequencing data,” Bioinformatics, 26, 3051–3058.CrossrefPubMedGoogle Scholar

  • Kleinjan, D.-J. and V. van Heyningen (1998): “Position Effect in Human Genetic Disease,” Human Molecular Genetics, 7, 1611–1618.PubMedCrossrefGoogle Scholar

  • Li, Y., N. Vinckenbosch, G. Tian, E. Huerta-Sanchez, T. Jiang, H. Jiang, A. Albrechtsen, G. Andersen, H. Cao, T. Korneliussen, N. Grarup, Y. Guo, I. Hellman, X. Jin, Q. Li, J. Liu, X. Liu, T. Sparso, M. Tang, H. Wu, R. Wu, C. Yu, H. Zheng, A. Astrup, L. Bolund, J. Holmkvist, T. Jorgensen, K. Kristiansen, O. Schmitz, T. W. Schwartz, X. Zhang, R. Li, H. Yang, J. Wang, T. Hansen, O. Pedersen, R. Nielsen, and J. Wang (2010): “Resequencing of 200 human exomes identifies an excess of low-frequency non-synonymous coding variants,” Nature Genetics, 42, 969–972.Web of ScienceCrossrefGoogle Scholar

  • Madrigal, I., L. Rodríguez-Revenga, L. Armengol, E. González, B. Rodriguez, C. Badenas, A. Sánchez, F. Martínez, M. Guitart, I. Fernández, J. A. Arranz, M. Tejada, L. A. Pérez-Jurado, X. Estivill, and M. Milà (2007): “X-chromosome tiling path array detection of copy number variants in patients with chromosome X-linked mental retardation.” BMC genomics, 8, 443+.Web of SciencePubMedCrossrefGoogle Scholar

  • Marioni, J. C., N. P. Thorne, and S. Tavaré (2006): “BioHMM: a heterogeneous hidden Markov model for segmenting array CGH data.” Bioinformatics, 22, 1144–1146.PubMedCrossrefGoogle Scholar

  • Medvedev, P., M. Stanciu, and M. Brudno (2009): “Computational methods for discovering structural variation with next-generation sequencing,” Nature Methods, 6, S13–S20.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Miller, C. A., O. Hampton, C. Coarfa, and A. Milosavljevic (2011): “ReadDepth: A Parallel R Package for Detecting Copy Number Alterations from Short Sequencing Reads,” PLoS ONE, 6, e16327+.Web of ScienceCrossrefGoogle Scholar

  • Nord, A., M. Lee, M. C. King, and T. Walsh (2011): “Accurate and exact CNV identification from targeted high-throughput sequence data,” BMC Genomics, 12, 184+.CrossrefWeb of SciencePubMedGoogle Scholar

  • O’Roak, B. J., P. Deriziotis, C. Lee, L. Vives, J. J. Schwartz, S. Girirajan, E. Karakoc, A. P. MacKenzie, S. B. Ng, C. Baker, M. J. Rieder, D. A. Nickerson, R. Bernier, S. E. Fisher, J. Shendure, and E. E. Eichler (2011): “Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations,” Nature Genetics, 43, 585–589.CrossrefGoogle Scholar

  • Pang, A., J. MacDonald, D. Pinto, J. Wei, M. Rafiq, D. Conrad, H. Park, M. Hurles, C. Lee, J. C. Venter, E. Kirkness, S. Levy, L. Feuk, and S. Scherer (2010): “Towards a comprehensive structural variation map of an individual human genome,” Genome Biology, 11, R52+.Web of ScienceCrossrefGoogle Scholar

  • Pruitt, K. D., J. Harrow, R. A. Harte, C. Wallin, M. Diekhans, D. R. Maglott, S. Searle, C. M. Farrell, J. E. Loveland, B. J. Ruef, E. Hart, M.-M. M. Suner, M. J. Landrum, B. Aken, S. Ayling, R. Baertsch, J. Fernandez-Banet, J. L. Cherry, V. Curwen, M. Dicuccio, M. Kellis, J. Lee, M. F. Lin, M. Schuster, A. Shkeda, C. Amid, G. Brown, O. Dukhanina, A. Frankish, J. Hart, B. L. Maidak, J. Mudge, M. R. Murphy, T. Murphy, J. Rajan, B. Rajput, L. D. Riddick, C. Snow, C. Steward, D. Webb, J. A. Weber, L. Wilming, W. Wu, E. Birney, D. Haussler, T. Hubbard, J. Ostell, R. Durbin, and D. Lipman (2009): “The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes.” Genome research, 19, 1316–1323.Web of SciencePubMedCrossrefGoogle Scholar

  • R Development Core Team (2011): R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria.Google Scholar

  • Rabiner, L. R. (1989): “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, 77, 257–286.CrossrefGoogle Scholar

  • Robinson, M. D., D. J. McCarthy, and G. K. Smyth (2010): “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data.” Bioinformatics (Oxford, England), 26, 139–140.CrossrefGoogle Scholar

  • Sathirapongsasuti, J. F., H. Lee, B. A. Horst, G. Brunner, A. J. Cochran, S. Binder, J. Quackenbush, and S. F. Nelson (2011): “Exome Sequencing-Based Copy-Number Variation and Loss of Heterozygosity Detection: ExomeCNV.” Bioinformatics (Oxford, England).CrossrefWeb of ScienceGoogle Scholar

  • Sebat, J., B. Lakshmi, D. Malhotra, J. Troge, C. Lese-Martin, T. Walsh, B. Yamrom, S. Yoon, A. Krasnitz, J. Kendall, A. Leotta, D. Pai, R. Zhang, Y.-H. H. Lee, J. Hicks, S. J. Spence, A. T. Lee, K. Puura, T. Lehtimäki, D. Ledbetter, P. K. Gregersen, J. Bregman, J. S. Sutcliffe, V. Jobanputra, W. Chung, D. Warburton, M.-C. C. King, D. Skuse, D. H. Geschwind, T. C. Gilliam, K. Ye, and M. Wigler (2007): “Strong association of de novo copy number mutations with autism.” Science (New York, N.Y.), 316, 445–449.Web of ScienceGoogle Scholar

  • Shen, J. J. and N. R. Zhang (2011): “Change-Point Model on Non-Homogeneous Poisson Processes with Application in Copy Number Profiling by Next-Generation DNA Sequencing,” Technical report, Division of Biostatistics, Stanford University.Google Scholar

  • St Clair, D. (2009): “Copy number variation and schizophrenia.” Schizophrenia bulletin, 35, 9–12.CrossrefWeb of ScienceGoogle Scholar

  • Venkatraman, E. S. and A. B. Olshen (2007): “A faster circular binary segmentation algorithm for the analysis of array CGH data,” Bioinformatics, 23, 657–663.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Weese, D., A.-K. Emde, T. Rausch, A. Döring, and K. Reinert (2009): “RazerSfast read mapping with sensitivity control,” Genome Research, 19, 1646–1654.Web of ScienceCrossrefPubMedGoogle Scholar

  • Xie, C. and M. Tammi (2009): “CNV-seq, a new method to detect copy number variation using high-throughput sequencing,” BMC Bioinformatics, 10, 80+.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Yoon, S., Z. Xuan, V. Makarov, K. Ye, and J. Sebat (2009): “Sensitive and accurate detection of copy number variants using read depth of coverage,” Genome Research, 19, 1586–1592.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Zhang, J., L. Feuk, G. E. Duggan, R. Khaja, and S. W. Scherer (2006): “Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome,” Cytogenetic and Genome Research, 115, 205–214.CrossrefGoogle Scholar

About the article

Published Online: 2011-11-08


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 10, Issue 1, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.2202/1544-6115.1732.

Export Citation

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael A. Iacocca, Jian Wang, Jacqueline S. Dron, John F. Robinson, Adam D. McIntyre, Henian Cao, and Robert A. Hegele
Journal of Lipid Research, 2017, Volume 58, Number 11, Page 2202
[2]
Vincent Plagnol, James Curtis, Michael Epstein, Kin Y. Mok, Emma Stebbings, Sofia Grigoriadou, Nicholas W. Wood, Sophie Hambleton, Siobhan O. Burns, Adrian J. Thrasher, Dinakantha Kumararatne, Rainer Doffinger, and Sergey Nejentsev
Bioinformatics, 2012, Volume 28, Number 21, Page 2747
[3]
Roberta Spinelli, Alessandra Pirola, Sara Redaelli, Nitesh Sharma, Hima Raman, Simona Valletta, Vera Magistroni, Rocco Piazza, and Carlo Gambacorti-Passerini
Molecular Genetics & Genomic Medicine, 2013, Volume 1, Number 4, Page 246
[4]
Nino Spataro, Ana Roca-Umbert, Laura Cervera-Carles, Mònica Vallès, Roger Anglada, Javier Pagonabarraga, Berta Pascual-Sedano, Antònia Campolongo, Jaime Kulisevsky, Ferran Casals, Jordi Clarimón, and Elena Bosch
Movement Disorders, 2017, Volume 32, Number 1, Page 165
[5]
Gundula Povysil, Antigoni Tzika, Julia Vogt, Verena Haunschmid, Ludwine Messiaen, Johannes Zschocke, Günter Klambauer, Sepp Hochreiter, and Katharina Wimmer
Human Mutation, 2017, Volume 38, Number 7, Page 889
[6]
Rocco Piazza, Vera Magistroni, Alessandra Pirola, Sara Redaelli, Roberta Spinelli, Serena Redaelli, Marta Galbiati, Simona Valletta, Giovanni Giudici, Giovanni Cazzaniga, Carlo Gambacorti-Passerini, and Reiner Albert Veitia
PLoS ONE, 2013, Volume 8, Number 10, Page e74825
[7]
Heather Mason-Suares, Latrice Landry, and Matthew S. Lebo
Current Genetic Medicine Reports, 2016, Volume 4, Number 3, Page 74
[8]
Celine S. Hong, Larry N. Singh, James C. Mullikin, and Leslie G. Biesecker
Genome Medicine, 2016, Volume 8, Number 1
[9]
Junbo Duan, Mingxi Wan, Hong-Wen Deng, and Yu-Ping Wang
IEEE Transactions on Biomedical Engineering, 2016, Volume 63, Number 3, Page 496
[10]
Jae-Yong Nam, Nayoung K. D. Kim, Sang Cheol Kim, Je-Gun Joung, Ruibin Xi, Semin Lee, Peter J. Park, and Woong-Yang Park
Briefings in Bioinformatics, 2016, Volume 17, Number 2, Page 185
[11]
Pubudu Saneth Samarakoon, Hanne Sørmo Sorte, Asbjørg Stray-Pedersen, Olaug Kristin Rødningen, Torbjørn Rognes, and Robert Lyle
BMC Genomics, 2016, Volume 17, Number 1
[12]
Vera M. Kalscheuer, Victoria M. James, Miranda L. Himelright, Philip Long, Renske Oegema, Corinna Jensen, Melanie Bienek, Hao Hu, Stefan A. Haas, Maya Topf, A. Jeannette M. Hoogeboom, Kirsten Harvey, Randall Walikonis, and Robert J. Harvey
Frontiers in Molecular Neuroscience, 2016, Volume 8
[13]
Daniel Backenroth, Jason Homsy, Laura R. Murillo, Joe Glessner, Edwin Lin, Martina Brueckner, Richard Lifton, Elizabeth Goldmuntz, Wendy K. Chung, and Yufeng Shen
Nucleic Acids Research, 2014, Volume 42, Number 12, Page e97
[14]
Yan Guo, Quanghu Sheng, David C. Samuels, Brian Lehmann, Joshua A. Bauer, Jennifer Pietenpol, and Yu Shyr
BioMed Research International, 2013, Volume 2013, Page 1

Comments (0)

Please log in or register to comment.
Log in