Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year

IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

See all formats and pricing
More options …
Volume 10, Issue 1 (May 2011)


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

A Two-Stage Poisson Model for Testing RNA-Seq Data

Paul L. Auer / Rebecca W Doerge
Published Online: 2011-05-16 | DOI: https://doi.org/10.2202/1544-6115.1627

RNA sequencing technology is providing data of unprecedented throughput, resolution, and accuracy. Although there are many different computational tools for processing these data, there are a limited number of statistical methods for analyzing them, and even fewer that acknowledge the unique nature of individual gene transcription. We introduce a simple and powerful statistical approach, based on a two-stage Poisson model, for modeling RNA sequencing data and testing for biologically important changes in gene expression. The advantages of this approach are demonstrated through simulations and real data applications.

Keywords: next-generation sequencing; RNA-Seq; differential expression

About the article

Published Online: 2011-05-16

Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.2202/1544-6115.1627.

Export Citation

©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Andrea Rau, Mélina Gallopin, Gilles Celeux, and Florence Jaffrézic
Bioinformatics, 2013, Volume 29, Number 17, Page 2146
Danni Yu, Wolfgang Huber, and Olga Vitek
Bioinformatics, 2013, Volume 29, Number 10, Page 1275
Davis J. McCarthy, Yunshun Chen, and Gordon K. Smyth
Nucleic Acids Research, 2012, Volume 40, Number 10, Page 4288
Douglas D. Baumann and Rebecca W. Doerge
Bioinformatics, 2014, Volume 30, Number 5, Page 601
Wei Sun and Yijuan Hu
Statistics in Biosciences, 2013, Volume 5, Number 1, Page 198
Seung Hoan Choi, Adam T. Labadorf, Richard H. Myers, Kathryn L. Lunetta, Josée Dupuis, and Anita L. DeStefano
BMC Bioinformatics, 2017, Volume 18, Number 1
Zhun Miao and Xuegong Zhang
Quantitative Biology, 2016, Volume 4, Number 4, Page 243
Dominik Buschmann, Anna Haberberger, Benedikt Kirchner, Melanie Spornraft, Irmgard Riedmaier, Gustav Schelling, and Michael W. Pfaffl
Nucleic Acids Research, 2016, Volume 44, Number 13, Page 5995
Noah Simon and Robert Tibshirani
Journal of the American Statistical Association, 2015, Volume 110, Number 512, Page 1707
Oswaldo Valdés-López, Josef Batek, Nicolas Gomez-Hernandez, Cuong T. Nguyen, Mariel C. Isidra-Arellano, Ning Zhang, Trupti Joshi, Dong Xu, Kim K. Hixson, Karl K. Weitz, Joshua T. Aldrich, Ljiljana Paša-Tolić, and Gary Stacey
Frontiers in Plant Science, 2016, Volume 7
Elisabetta Bonafede, Franck Picard, Stéphane Robin, and Cinzia Viroli
Biometrics, 2016, Volume 72, Number 3, Page 804
Tsung Fei Khang and Ching Yee Lau
PeerJ, 2015, Volume 3, Page e1360
Yongchao Dou, Xiaomei Guo, Lingling Yuan, David R. Holding, and Chi Zhang
BioMed Research International, 2015, Volume 2015, Page 1
Yan Guo, Shilin Zhao, Fei Ye, Quanhu Sheng, and Yu Shyr
BioMed Research International, 2014, Volume 2014, Page 1
Matthew D. MacManes and Michael B. Eisen
PeerJ, 2013, Volume 1, Page e113

Comments (0)

Please log in or register to comment.
Log in