Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year


IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2015: 0.954
Source Normalized Impact per Paper (SNIP) 2015: 0.554

Mathematical Citation Quotient (MCQ) 2015: 0.06

Online
ISSN
1544-6115
See all formats and pricing
In This Section
Volume 11, Issue 2 (Jan 2012)

Issues

Candidate Pathway Based Analysis for Cleft Lip with or without Cleft Palate

Tian-Xiao Zhang
  • Johns Hopkins University
/ Terri H. Beaty
  • Johns Hopkins University
/ Ingo Ruczinski
  • Johns Hopkins University
Published Online: 2012-01-06 | DOI: https://doi.org/10.2202/1544-6115.1717

The objective of this research was to identify potential biological pathways associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and to explore the potential biological mechanisms underlying these associated pathways on risk of NSCL/P. This project was based on the dataset of a previously published genome-wide association (GWA) study on NSCL/P (Beaty et al. 2010). Case-parent trios used here originated from an international consortium (The Gene, Environment Association Studies consortium, GENEVA) formed in 2007. A total of 5,742 individuals from 1,908 CL/P case-parents trios (1,591 complete trios and 317 incomplete trios where one parent was missing) were collected and genotyped using the Illumina Human610-Quad array. Candidate pathways were selected using a list of 356 genes that may be related to oral clefts. In total, 42 candidate pathways, which included 1,564 genes and 40,208 SNPs were tested. Using a pathway-based analysis approach proposed by Wang et al (2007), we conducted a permutation-based test to assess the statistical significance of the nominal p-values of 42 candidate pathways. The analysis revealed several pathways yielding nominally significant p-values. However, controlling for the family wise error rate, none of these pathways could retain statistical significance. Nominal p-values of these pathways were concentrated at the lower tail of the distribution, with more than expected low p-values. A permutation based test for examining this type of distribution pattern yielded an overall p-value of 0.029. Thus, while this pathway-based analysis did not yield a clear significant result for any particular pathway, we conclude that one or more of the genes and pathways considered here likely do play a role in oral clefting.

Keywords: case-parent trios; oral clefts; single nucleotide polymorphisms; genes; pathways

About the article

Published Online: 2012-01-06



Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, DOI: https://doi.org/10.2202/1544-6115.1717. Export Citation

Comments (0)

Please log in or register to comment.
Log in