Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 11, Issue 3


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Normalization, bias correction, and peak calling for ChIP-seq

Aaron Diaz / Kiyoub Park / Daniel A. Lim / Jun S. Song
Published Online: 2012-03-31 | DOI: https://doi.org/10.1515/1544-6115.1750

Next-generation sequencing is rapidly transforming our ability to profile the transcriptional, genetic, and epigenetic states of a cell. In particular, sequencing DNA from the immunoprecipitation of protein-DNA complexes (ChIP-seq) and methylated DNA (MeDIP-seq) can reveal the locations of protein binding sites and epigenetic modifications. These approaches contain numerous biases which may significantly influence the interpretation of the resulting data. Rigorous computational methods for detecting and removing such biases are still lacking. Also, multi-sample normalization still remains an important open problem. This theoretical paper systematically characterizes the biases and properties of ChIP-seq data by comparing 62 separate publicly available datasets, using rigorous statistical models and signal processing techniques. Statistical methods for separating ChIP-seq signal from background noise, as well as correcting enrichment test statistics for sequence-dependent and sonication biases, are presented. Our method effectively separates reads into signal and background components prior to normalization, improving the signal-to-noise ratio. Moreover, most peak callers currently use a generic null model which suffers from low specificity at the sensitivity level requisite for detecting subtle, but true, ChIP enrichment. The proposed method of determining a cell type-specific null model, which accounts for cell type-specific biases, is shown to be capable of achieving a lower false discovery rate at a given significance threshold than current methods.

Keywords: ChIP-seq; wavelets; regression; normalization; order statistics

About the article

Published Online: 2012-03-31

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 11, Issue 3, ISSN (Online) 1544-6115, DOI: https://doi.org/10.1515/1544-6115.1750.

Export Citation

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Patrick Piero Bovio, Henriette Franz, Stefanie Heidrich, Tudor Rauleac, Fabian Kilpert, Thomas Manke, and Tanja Vogel
Molecular Neurobiology, 2018
Anish Dattani, Damian Kao, Yuliana Mihaylova, Prasad Abnave, Samantha Hughes, Alvina Lai, Sounak Sahu, and A. Aziz Aboobaker
Genome Research, 2018, Volume 28, Number 10, Page 1543
Florian Schmidt, Marcel H Schulz, and Inanc Birol
Bioinformatics, 2018
Yvonne C. Lussi, Luca Mariani, Carsten Friis, Juhani Peltonen, Toshia R. Myers, Claudia Krag, Garry Wong, and Anna Elisabetta Salcini
Development, 2016, Volume 143, Number 20, Page 3751
Tslil Gabrieli, Hila Sharim, Gil Nifker, Jonathan Jeffet, Tamar Shahal, Rani Arielly, Michal Levi-Sakin, Lily Hoch, Nissim Arbib, Yael Michaeli, and Yuval Ebenstein
ACS Nano, 2018
Mike Myschyshyn, Marco Farren-Dai, Tien-Jui Chuang, and David Vocadlo
BMC Bioinformatics, 2017, Volume 18, Number 1
Paul D. Goetsch, Jacob M. Garrigues, Susan Strome, and Stefan Gaubatz
PLOS Genetics, 2017, Volume 13, Number 11, Page e1007088
Fidel Ramírez, Friederike Dündar, Sarah Diehl, Björn A. Grüning, and Thomas Manke
Nucleic Acids Research, 2014, Volume 42, Number W1, Page W187
Gregory J. Zynda, Jawon Song, Lorenzo Concia, Emily E. Wear, Linda Hanley-Bowdoin, William F. Thompson, and Matthew W. Vaughn
BMC Bioinformatics, 2017, Volume 18, Number 1
Jawad Merhej, Amandine Frigo, Stéphane Le Crom, Jean-Michel Camadro, Frédéric Devaux, and Gaëlle Lelandais
Yeast, 2014, Volume 31, Number 10, Page 375
Kelly Patrick Stanton, Fabio Parisi, Francesco Strino, Neta Rabin, Patrik Asp, and Yuval Kluger
Nucleic Acids Research, 2013, Volume 41, Number 16, Page e161
Hans-Ulrich Klein, Martin Schäfer, Bo T. Porse, Marie S. Hasemann, Katja Ickstadt, and Martin Dugas
Bioinformatics, 2014, Volume 30, Number 8, Page 1154
Manuel Allhoff, Kristin Seré, Heike Chauvistré, Qiong Lin, Martin Zenke, and Ivan G. Costa
Bioinformatics, 2014, Volume 30, Number 24, Page 3467
Olga Novikova, Dorie Smith, Ingrid Hahn, Arthur Beauregard, Marlene Belfort, and Harmit S. Malik
PLoS Genetics, 2014, Volume 10, Number 12, Page e1004853
Timothy Bailey, Pawel Krajewski, Istvan Ladunga, Celine Lefebvre, Qunhua Li, Tao Liu, Pedro Madrigal, Cenny Taslim, Jie Zhang, and Fran Lewitter
PLoS Computational Biology, 2013, Volume 9, Number 11, Page e1003326
Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, and Junwen Wang
Quantitative Biology, 2016, Volume 4, Number 4, Page 283
Aaron Diaz, Siyuan J. Liu, Carmen Sandoval, Alex Pollen, Tom J. Nowakowski, Daniel A. Lim, and Arnold Kriegstein
Bioinformatics, 2016, Volume 32, Number 14, Page 2219
Jonathan Cairns, Andy G. Lynch, and Simon Tavaré
Frontiers in Genetics, 2014, Volume 5
Tomasz Chelmicki, Friederike Dündar, Matthew James Turley, Tasneem Khanam, Tugce Aktas, Fidel Ramírez, Anne-Valerie Gendrel, Patrick Rudolf Wright, Pavankumar Videm, Rolf Backofen, Edith Heard, Thomas Manke, and Asifa Akhtar
eLife, 2014, Volume 3

Comments (0)

Please log in or register to comment.
Log in