Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

6 Issues per year

IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 11, Issue 4


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

A Non-Homogeneous Dynamic Bayesian Network with Sequentially Coupled Interaction Parameters for Applications in Systems and Synthetic Biology

Marco Grzegorczyk / Dirk Husmeier
  • School of Mathematics and Statistics, University of Glasgow, and Biomathematics and Statistics Scotland (BioSS), Edinburgh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-07-12 | DOI: https://doi.org/10.1515/1544-6115.1761


An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.

Keywords: gene regulatory networks; non-stationary gene expression time series; time varying dynamic Bayesian networks; Bayesian regularization; Bayesian multiple changepoint processes; reversible jump Markov chain Monte Carlo

About the article

Published Online: 2012-07-12

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 11, Issue 4, ISSN (Online) 1544-6115, DOI: https://doi.org/10.1515/1544-6115.1761.

Export Citation

©2012 Walter de Gruyter GmbH & Co. KG, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mahdi Shafiee Kamalabad and Marco Grzegorczyk
Statistica Neerlandica, 2018
Shibin Mathew, Sankaramanivel Sundararaj, and Ipsita Banerjee
Processes, 2015, Volume 3, Number 2, Page 286

Comments (0)

Please log in or register to comment.
Log in