Bolstad, B. M., R. A. Irizarry, M. Åstrand, and T. P. Speed (2003): “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,” Bioinformatics, 19, 185–193.PubMedCrossrefGoogle Scholar

Boulesteix, A. -L. and K. Strimmer (2006): “Partial least squares: a versatile tool for the analysis of high-dimensional genomic data,” Briefings is Bioinformatics, 8, 32–44.Web of ScienceGoogle Scholar

Buyse, M., S. Loi, L. van’t Veer, G. Viale, M. Delorenzi, A. M. Glas, M. S. d’Assignies, J. Bergh, R. Lidereau, P. Ellis, A. Harris, J. Bogaerts, P. Therasse, A. Floore, M. Amakrane, F. Piette, E. Rutgers, C. Sotiriou, F. Cardoso, M. J. Piccart, and On behalf of the TRANSBIG Consortium (2006): “Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer,” J. Natl. Cancer Inst., 98, 1183–1192.Google Scholar

Desmedt, C., F. Piette, S. Loi, Y. Wang, F. Lallemand, B. Haibe-Kains, G. Viale, M. Delorenzi, Y. Zhang, M. S. d’Assignies, J. Bergh, R. Lidereau, P. Ellis, A. L. Harris, J. G. Klijn, J. A. Foekens, F. Cardoso, M. J. Piccart, M. Buyse, C. Sotiriou, and the TRANSBIG Consortium (2007): “Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series,” Clin. Cancer Res., 13, 3207–3214.Web of ScienceGoogle Scholar

Dhillon, A. S., S. Hagan, O. Rath, and W. Kolch (2007): “MAP kinase signaling pathways in cancer,” Oncogene, 26, 3279–3290.PubMedCrossrefGoogle Scholar

Gui, J. and H. Li (2005): “Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data,” Bioinformatics, 21, 3001–3008.CrossrefPubMedGoogle Scholar

Hackstadt, A. J. and A. M. Hess (2009): “Filtering for increased power for microarray data analysis,” BMC Bioinformatics, 10, 11.PubMedWeb of ScienceCrossrefGoogle Scholar

Harrell, Jr., F. E. (2010): Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis, Springer.Google Scholar

Hedley, B. D., A. L. Allan, and A. Xenocostas (2011): “The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression,” Clin. Cancer Res., 17, 6373–6380.Google Scholar

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, and M. S. Lauer (2008): “Random survival forests,” Ann. Appl. Stat., 2, 841–860.Google Scholar

Kammers, K., M. Lang, J. G. Hengstler, M. Schmidt, and J. Rahnenführer (2011): “Survival models with preclustered gene groups as covariates,” BMC Bioinformatics, 12, 478.CrossrefWeb of SciencePubMedGoogle Scholar

Katz, S., R. A. Irizarry, X. Lin, M. Tripputi, and M. W. Porter (2006): “A summarization approach for Affymetrix GeneChip data using a reference training set from a large, biologically diverse database,” BMC Bioinformatics, 7, 464.CrossrefPubMedGoogle Scholar

Kennedy, R. D., M. Bylesjo, P. Kerr, T. Davison, J. M. Black, E. W. Kay, R. J. Holt, V. Proutski, M. Ahdesmaki, V. Farztdinov, N. Goffard, P. Hey, F. McDyer, K. Mulligan, J. Mussen, E. O’Brien, Gavin, Oliver, S. M. Walker, J. M. Mulligan, C. Wilson, A. Winter, D. O’Donoghue, H. Mulcahy, J. O’Sullivan, K. Sheahan, J. Hyland, R. Dhir, O. F. Bathe, O. Winqvist, U. Manne, C. Shanmugam, S. Ramaswamy, E. J. Leon, W. I. S. Jr, U. McDermott, R. H. Wilson, D. Longley, J. Marshall, R. Cummins, D. J. Sargent, P. G. Johnston, and D. P. Harkin (2011): “Development and independent validation of a prognostic assay for stage II colon cancer using formalin-fixed paraffin-embedded tissue,” J. Clin. Oncol., 29.Google Scholar

Li, H. and J. Gui (2004): “Partial Cox regression analysis for high-dimensional microarray gene expression data,” Bioinformatics, 20(Suppl 1), i208–i215.Google Scholar

Millikan, R., B. Newman, C. -K. Tse, P. Moorman, K. Conway, L. Smith, M. Labbok, J. Geradts, J. Bensen, S. Jackson, S. Nyante, C. Livasy, L. Carey, H. S. Earp, and C. Perou (2008): “Epidemiology of basal-like breast cancer,” Breast Cancer Res. Treat., 109, 123–139.Google Scholar

Newson, R. (2006): “Confidence intervals for rank statistics: Somers’ d and extensions,” The Stata Journal, 6, 309–334.Google Scholar

Paik, S., S. Shak, G. Tang, C. Kim, J. Baker, M. Cronin, F. L. Baehner, M. G. Walker, D. Watson, T. Park, W. Hiller, E. R. Fisher, D. L. Wickerham, J. Bryant, and N. Wolmark (2004): “A multigene assay to predict recurrence of Tamoxifen-treated, node-negative breast cancer,” N. Engl. J. Med., 351, 2817–2826.Google Scholar

Pillai, R., R. Deeter, C. Rigl, J. Nystrom, M. H. Miller, L. Buturovic, and W. Henner (2011): “Validation and reproducibility of a microarray-based gene expression test for tumor identification in formalin-fixed, paraffin-embedded specimens,” The Journal of Molecular Diagnostics, 13, 48–56.PubMedGoogle Scholar

Popovici, V., W. Chen, B. D. Gallas, C. Hatzis, W. Shi, F. W. Samuelson, Y. Nikolsky, M. Tsyganova, A. Ishkin, K. R. H. Tatiana Nikolskaya, V. Valero, D. Booser, M. Delorenzi, G. N. Hortobagyi, L. Shi, W. F. Symmans, and L. Pusztai (2010): “Effect of training-sample size and classification difficulty on the accuracy of genomic predictors,” Breast Cancer Res., 12, R5.Web of ScienceCrossrefGoogle Scholar

Raykar, V. C., H. Steck, B. Krishnapuram, C. Dehing-Oberije, and P. Lambin (2007): “On ranking in survival analysis: bounds on the concordance index,” in *NIPS*.Google Scholar

Schmidt, M., D. Böhm, C. von Törne, E. Steiner, A. Puhl, H. Pilch, H.-A. Lehr, J. G. Hengstler, H. Kölbl, and M. Gehrmann (2008): “The humoral immune system has a key prognostic impact in node-negative breast cancer,” Cancer Res., 68, 5405.CrossrefGoogle Scholar

Simon, R. (2012): “Clinical trials for predictive medicine,” Stat. Med., 31, 3031–3040.Web of SciencePubMedCrossrefGoogle Scholar

Van’t Veer, L. J., H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, M. Mao, H. L. Peterse, K. van der Kooy, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend (2002): “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, 415, 530–536.Google Scholar

Wang, Y., J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, D. Talantov, M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins, and J. A. Foekens (2005): “Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer,” The Lancet, 365, 671–679.Google Scholar

Witten, D. and R. Tibshirani (2010): “Survival analysis with high-dimensional covariates,” Stat. Methods Med. Res., 19, 29.CrossrefPubMedWeb of ScienceGoogle Scholar

## Comments (0)