Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year


IMPACT FACTOR 2016: 0.646
5-year IMPACT FACTOR: 1.191

CiteScore 2016: 0.94

SCImago Journal Rank (SJR) 2016: 0.625
Source Normalized Impact per Paper (SNIP) 2016: 0.596

Mathematical Citation Quotient (MCQ) 2016: 0.06

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 13, Issue 1 (Feb 2014)

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Detection of epistatic effects with logic regression and a classical linear regression model

Magdalena Malina
  • Corresponding author
  • Section for Medical Statistics, Center of Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katja Ickstadt
  • Faculty of Statistics, Technische Universität Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Holger Schwender / Martin Posch
  • Section for Medical Statistics, Center of Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Bogdan
  • Department of Mathematics and Computer Science, Wrocław University of Technology, ul. Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Mathematics and Computer Science, Jan Dlugosz University in Czestochowa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-01-07 | DOI: https://doi.org/10.1515/sagmb-2013-0028

Abstract

To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham’s model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham’s approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham’s approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

Keywords: Cockerham’s model; epistatic effects; experimental study; high order interactions; generalized linear models; logic regression

References

  • Arnold, S. F. (1981): The theory of linear models and multivariate analysis, John Wiley & Sons: New York, pp. 79–82.Google Scholar

  • Baierl, A., M. Bogdan, F. Frommlet and A. Futschik (2006): “On locating multiple interacting quantitative trait loci in intercross designs,” Genetics, 173, 1693–1703.Google Scholar

  • Ball, R. D. (2001): “Bayesian methods for quantitative trait loci mapping based on model selection: Approximate analysis using the Bayesian information criterion,” Genetics, 159, 1351–1364.Google Scholar

  • Bateson, W. and G. Mendel (1909): Mendel’s principles of heredity, Cambridge University Press: New York, G.P. Putnam’s Sons.Google Scholar

  • Bogdan, M., F. Frommlet, P. Biecek, R. Cheng, J. K. Ghosh and R. Doerge (2008): “Extending the modified Bayesian information criterion (mbic) to dense markers and multiple interval mapping,” Biometrics, 64, 1162–1169, URL http://dx.doi.org/10.1111/j.1541-0420.2008.00989.xCrossrefWeb of Science

  • Boulesteix, A. L., A. L. Strobl, S. Weidinger and W. Wichmann, H. E. (2007): “Multiple testing for snp-snp interactions,” Statist. Appl. Gen. Mol. Biol., 6, 1544–6115.Google Scholar

  • Breiman, L. (1996): “Bagging predictors,” Mach. Learn., 26, 123–140.CrossrefGoogle Scholar

  • Breiman, L. (2001): “Random forests,” Mach. Learn., 45, 5–32.CrossrefGoogle Scholar

  • Breiman, L., J. H. Friedman, R. A. Olshen and C. J. Stone (1984): Classification and regression trees, Belmont, CA: Wadsworth.Google Scholar

  • Broman, K. W. and S. C. G. Wu, H. Sen (2003): “R/qtl: Qtl mapping in experimental crosses,” Bioinformatics, 19, 889–890.Web of ScienceCrossrefPubMedGoogle Scholar

  • Carlborg, O. and C. S. Haley (2004): “Epistasis: too often neglected in complex trait studies?” Nat. Rev. Genet., 5, 618–625.PubMedCrossrefGoogle Scholar

  • Chen, C., H. Schwender, J. Keith, R. Nunkesser, K. Mengersen and P. Macrossan (2011): “Methods for identifying snp interactions: a review on variations of logic regression, random forest and bayesian logistic regression,” Comput. Biol. and Bioinf., 8, 1580–1591.Web of ScienceGoogle Scholar

  • Chen, Z. and J. Liu (2009): “Mixture generalized linear models for multiple interval mapping of quantitative trait loci in experimental crosses,” Biometrics, 65, 470–477.Web of ScienceGoogle Scholar

  • Clayton, D. G. (2009): “Prediction and interaction in complex disease genetics: Experience in type 1 diabetes,” PLoS Genet, 5, e1000540, URL http://dx.doi.org/10.1371%2Fjournal.pgen.1000540.

  • Cockerham, C. C. (1954): “An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present,” Genetics, 39, 859–882.Google Scholar

  • Coffman, C., R. W. Doerge, K. Simonsen, K. Nichols, C. Duarte, R. Wolfinger, and L. M. McIntyre (2005): “An effective model selection strategy for detecting multiple qtl,” Genetics, 170, 1281–1297.Google Scholar

  • Cordell, H. J. (2002): “Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans,” Hum. Mole. Genet., 11, 2463–2468, URL http://hmg.oxfordjournals.org/content/11/20/2463.abstract.Crossref

  • Cordell, H. J. (2009): “Detecting gene-gene interactions that underlie human diseases,” Nat. Rev. Genet., 10, 392–404.CrossrefWeb of ScienceGoogle Scholar

  • Doerge, R. W. (2002): “Mapping and analysis of quantitative trait loci in experimental populations,” Nat. Rev. Gene., 43–52, URL http://www.nature.com/nrg/journal/v3/n1/full/nrg703.html.

  • Dupuis, J. and D. Siegmund (1999): “Statistical methods for mapping quantitative trait loci from a dense set of markers,” Genetics, 151, 373–386.Google Scholar

  • Erhardt, V., M. Bogdan and C. Czado (2010): “Locating multiple interacting quantitative trait loci with the zero-inated generalized Poisson regression,” Statist. Appl. Gen. Mol. Biol, 9, 1554–6115.Web of ScienceGoogle Scholar

  • Fisher, R. A. (1919): “The correlation between relatives on the supposition of Mendelian inheritance,” T. Roy. Soc. Edin., 52, 399–433.Google Scholar

  • Fritsch, A. and K. Ickstadt (2007): “Comparing logic regression based methods for identifying snp interactions,” Berlin, Heidelberg: Springer, Lecture Notes in Computer Science, 4414, 90–103.Google Scholar

  • Haley, C. and S. Knott (1992): “A simple regression method for mapping quantitative trait loci in line crosses using anking markers,” Heredity, 69, 315–324.Google Scholar

  • Jansen, R. and P. Stam (1994): “High resolution of quantitative traits into multiple loci via interval mapping,” Genetics, 136, 1447–1455.Google Scholar

  • Kao, C. and Z. Zeng (2002): “Modeling epistasis of quantitative trait loci using Cockerham′s model,” Genetics, 160, 1243–1261.Google Scholar

  • Kao, C., Z. Zeng and R. Teasdale (1999): “Multiple interval mapping for quantitative trait loci,” Genetics, 152, 1203–1216.Google Scholar

  • Kirkpatrick, S., C. D. Gelatt and M. Vecchi (1983): “Optimization by simulated annealing,” Science, 220, 671–680.Google Scholar

  • Kooperberg, C. and I. Ruczinski (2005): “Identifying interacting snps using Monte Carlo logic regression,” Genet. Epidemiol., 28, 157–170.PubMedCrossrefGoogle Scholar

  • Lander, E. S. and D. Botstein (1989): “Mapping Mendelian factors underlying quantitative traits using rp linkage maps.” Genetics, 121, 185–199, URL http://www.genetics.org/content/121/1/185.abstract.

  • Li, W. and Z. Chen (2009): “Multiple interval mapping for quantitative trait loci with a spike in the trait distribution,” Genetics, 182, 337–342.Web of ScienceGoogle Scholar

  • Liu, J., Y. Liu, X. Liu and H. -W. Deng (2007): “Bayesian mapping of quantitative trait loci for multiple complex traits with the use of variance components,” Am. J. Hum. Genet., 81, 304–320.Web of ScienceGoogle Scholar

  • Lucek, P. R. and J. Ott (1997): “Neural network analysis of complex traits,” Genet. Epidemiol., 14, 1101–1106.PubMedCrossrefGoogle Scholar

  • Lyons, M. A., H. Wittenburg, R. Li, K. A. Walsh, M. R. Leonard, G. A. Churchill, M. C. Carey and B. Paigen (2003): “New quantitative trait loci that contribute to cholesterol gallstone formation detected in an intercross of cast/ei and 129s1/svimj inbred mice,” Physiol. Genomics, 14, 225–239.Google Scholar

  • McIntyre, L., C. Coffman and R. Doerge (2001): “Detection and location of single binary trait loci in experimental populations,” Genet. Res., 78, 79–92.PubMedGoogle Scholar

  • Ruczinski, I., C. Kooperberg and M. LeBlanc (2003): “Logic regression,” J. Comput. Graphical Statist., 12, 474–511.Google Scholar

  • Ruczinski, I., C. Kooperberg and M. LeBlanc (2004): “Exploring interactions in high-dimensional genomic data: an overview of logic regression, with applications,” J. Multivariate Anal., 90, 178–195.Google Scholar

  • Schwender, H., K. Bowers, M. D. Fallin and I. Ruczinski (2011): “Importance measures for epistatic interactions in case-parent trios,” Ann. Hum. Genet., 75, 122–132.Web of ScienceGoogle Scholar

  • Schwender, H. and K. Ickstadt (2008): “Identification of snp interactions using logic regression,” Biostatistics, 9, 187–198.CrossrefWeb of SciencePubMedGoogle Scholar

  • Sen, S. and G. A. Churchill (2001): “A statistical framework for quantitative trait mapping,” Genetics, 159, 371–387.Web of ScienceGoogle Scholar

  • Xu, S. and W. R. Atchley (1996): “Mapping quantitative trait loci for complex binary diseases using line crosses,” Genetics, 143, 1417–1424.Google Scholar

  • Yandell, B. S., T. Mehta, S. Banerjee, R. M. J. Y. Shriner, D. Venkataraman, W. W. Neely, H. Wu, R. von Smith and N. Yi (2007): “Qtl with Bayesian interval mapping in experimental crosses,” Bioinformatics, 23, 641–643.Web of ScienceGoogle Scholar

  • Yi, N. and S. Xu (2000): “Bayesian mapping of quantitative trait loci for complex binary traits,” Genetics, 155, 1391–1403.Google Scholar

  • Zeng, Z. B. (1994): “Precision mapping of quantitative trait loci,” Genetics, 136, 1457–1468.Google Scholar

  • Zhang, M., K. L. Montooth, M. T. Wells, A. G. Clark and D. Zhang (2005): “Mapping multiple quantitative trait loci by Bayesian classification,” Genetics, 169, 2305–2318, URL http://www.genetics.org/content/169/4/2305.abstract.

About the article

Corresponding author: Magdalena Malina, Section for Medical Statistics, Center of Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria, e-mail:


Published Online: 2014-01-07

Published in Print: 2014-02-01


Citation Information: Statistical Applications in Genetics and Molecular Biology, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2013-0028.

Export Citation

©2014 by Walter de Gruyter Berlin Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in