Ahmed, A. and E. P. Xing (2009): “Recovering time-varying networks of dependencies in social and biological studies,” Proc. Natl. Acad. Sci., 106, 11878–11883.CrossrefGoogle Scholar

Äijö, T. and H. Lähdesmäki (2009): “Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics,” Bioinformatics, 25, 2937–2944.PubMedCrossrefGoogle Scholar

Andrieu, C. and A. Doucet (1999): “Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC,” IEEE T Signal Proces., 47, 2667–2676.CrossrefGoogle Scholar

Barenco, M., D. Tomescu, D. Brewer, R. Callard, J. Stark, and M. Hubank (2006): “Ranked prediction of p53 targets using hidden variable dynamic modeling,” Genome Biology, 7, R25.CrossrefGoogle Scholar

Beal, M., F. Falciani, Z. Ghahramani, C. Rangel, and D. Wild (2005): “A Bayesian approach to reconstructing genetic regulatory networks with hidden factors,” Bioinformatics, 21, 349–356.PubMedCrossrefGoogle Scholar

Beal, M. (2003): Variational Algorithms for Approximate Bayesian Inference, Ph.D. thesis, Gatsby Computational Neuroscience Unit, University College London, UK.Google Scholar

Bengtsson, M., M. Hemberg, P. Rorsman, and A. Ståhlberg (2008): “Quantification of mRNA in single cells and modeling of RT-qPCR induced noise,” BMC Molecular Biology, 9, 63.CrossrefGoogle Scholar

Bishop, C. M. (2006): *Pattern Recognition and Machine Learning*, Singapore: Springer.Google Scholar

Brandt, S. (1999): *Data Analysis: Statistical and Computational Methods for Scientists and Engineers*, New York, USA: Springer.Google Scholar

Brooks, S. and A. Gelman (1999): “General methods for monitoring convergence of iterative simulations,” J. Comput. Graph. Stat., 7, 434–455.Google Scholar

Butte, A. J. and I. S. Kohane (2000): “Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements,” in *Pacific Symposium on Biocomputing*, volume 5, 418–429.Google Scholar

Ciocchetta, F. and J. Hillston (2009): “Bio-PEPA: A framework for the modeling and analysis of biological systems,” Theor. Comput. Sci., 410, 3065–3084.CrossrefGoogle Scholar

Davies, J. and M. Goadrich (2006): “The relationship between Precision-Recall and ROC curves,” Proceedings of the 23rd International Conference on Machine Learning, 233–240.Google Scholar

Edwards, K., O. Akman, K. Knox, P. Lumsden, A. Thomson, P. Brown, A. Pokhilko, L. Kozma-Bognar, F. Nagy, D. Rand, A. J. Millar. (2010): “Quantitative analysis of regulatory flexibility under changing environmental conditions,” Mol. Syst. Biol., 6, 424.PubMedGoogle Scholar

Feugier, F. and A. Satake (2012): “Dynamical feedback between circadian clock and sucrose availability explains adaptive response of starch metabolism to various photoperiods,” Front. Plant Sci., 3.PubMedGoogle Scholar

Friedman, J., T. Hastie, and R. Tibshirani (2008): “Sparse inverse covariance estimation with the graphical Lasso,” Biostatistics, 9, 432–441.CrossrefPubMedGoogle Scholar

Friedman, J., T. Hastie, and R. Tibshirani (2010): “Regularization paths for generalized linear models via coordinate descent,” J. Stat. Softw., 33, 1–22.Google Scholar

Friedman, N., M. Linial, I. Nachman, and D. Pe’er (2000): “Using Bayesian networks to analyze expression data,” J. Comput. Biol., 7, 601–620.CrossrefGoogle Scholar

Geiger, D. and D. Heckerman (1994): “Learning gaussian networks,” in International Conference on Uncertainty in Artificial Intelligence, Seattle, WA: Morgan Kaufmann Publishers, 235–243.Google Scholar

Gelman, A. and D. Rubin (1992): “Inference from iterative simulation using multiple sequences,” Stat. Sci., 7, 457–472.CrossrefGoogle Scholar

Gillespie, D. (1977): “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem., 81, 2340–2361.CrossrefGoogle Scholar

Grzegorczyk, M. and D. Husmeier (2012): “A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology,” Stat. Appl. Genet. Mol. Biol. (SAGMB), 11, article 7.Google Scholar

Grzegorczyk, M. and D. Husmeier (2013): “Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian models,” Mach. Learn., 91, 1–50.Google Scholar

Guerriero, M., A. Pokhilko, A. Fernández, K. Halliday, A. Millar, and J. Hillston (2012): “Stochastic properties of the plant circadian clock,” J. R. Soc. Interface, 9, 744–756.CrossrefGoogle Scholar

Hanley, J. A. and B. J. McNeil (1982): “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology, 143, 29–36.Google Scholar

Hastie, T., R. Tibshirani, and J. J. H. Friedman (2001): The Elements of Statistical Learning, volume 1, New York: Springer.Google Scholar

Herrero, E., E. Kolmos, N. Bujdoso, Y. Yuan, M. Wang, M. C. Berns, H. Uhlworm, G. Coupland, R. Saini, M. Jaskolski, A. Webb, J. Gonçalves, S. J. Davis. (2012): “EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the Arabidopsis circadian clock,” Plant Cell, 24, 428–443.Google Scholar

Husmeier, D. (1999): Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions, Perspectives in Neural Computing, London: Springer.Google Scholar

Husmeier, D. (2003): “Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks,” Bioinformatics, 19, 2271–2282.CrossrefPubMedGoogle Scholar

Kalaitzis, A. A., A. Honkela, P. Gao, and N. D. Lawrence (2013): *gptk: Gaussian processes tool-kit*, URL http://CRAN.R-project.org/package=gptk, R package version 1.06.

Ko, Y., C. Zhai, and S. Rodriguez-Zas (2007): “Inference of gene pathways using Gaussian mixture models,” in International Conference on Bioinformatics and Biomedicine, Fremont, CA, 362–367.Google Scholar

Ko, Y., C. Zhai, and S. Rodriguez-Zas (2009): “Inference of gene pathways using mixture Bayesian networks,” BMC Syst. Biol., 3, 54.PubMedCrossrefGoogle Scholar

Kolmos, E., M. Nowak, M. Werner, K. Fischer, G. Schwarz, S. Mathews, H. Schoof, F. Nagy, J. M. Bujnicki, and S. J. Davis (2009): “Integrating ELF4 into the circadian system through combined structural and functional studies,” HFSP J, 3, 350–366.CrossrefGoogle Scholar

Lawrence, N. D., M. Girolami, M. Rattray, and G. Sanguinetti (2010): Learning and inference in computational systems biology, Cambridge, MA: MIT Press Cambridge.Google Scholar

Lèbre, S., J. Becq, F. Devaux, G. Lelandais, and M. Stumpf (2010): “Statistical inference of the time-varying structure of gene-regulation networks,” BMC Syst. Biol., 4.PubMedCrossrefGoogle Scholar

Locke, J. C. W., M. M. Southern, L. Kozma-Bognár, V. Hibberd, P. E. Brown, M. S. Turner, and A. J. Millar (2005): “Extension of a genetic network model by iterative experimentation and mathematical analysis,” Mol. Syst. Biol., 1.PubMedCrossrefGoogle Scholar

Locke, J. C. W., L. Kozma-Bognár, P. D. Gould, B. Fehér, E. Kevei, F. Nagy, M. S. Turner, A. Hall, and A. J. Millar (2006): “Experimental validation of a predicted feedback loop in the multi-oscillator clock of *Arabidopsis thaliana*,” Mol. Syst. Biol., 2.CrossrefGoogle Scholar

MacKay, D. J. (1992): “Bayesian interpolation,” Neural Comput., 4, 415–447.CrossrefGoogle Scholar

Margolin, A. A., I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Dalla-Favera, and A. Califano (2006): “ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context,” BMC Bioinformatics, 7.CrossrefGoogle Scholar

Marin, J.-M. and C. P. Robert (2007): Bayesian core: A practical approach to computational Bayesian statistics, New York, USA: Springer.Google Scholar

Meyer, P. E., F. Lafitte, and G. Bontempi (2008): “minet: A R/Bioconductor Package for Inferring Large Transcriptional Networks Using Mutual Information,” BMC Bioinformatics, 9.CrossrefGoogle Scholar

Morrissey, E. R., M. A. Juárez, K. J. Denby, and N. J. Burroughs (2011): “Inferring the time-invariant topology of a nonlinear sparse gene regulatory network using fully Bayesian spline autoregression,” Biostatistics, 12, 682–694.PubMedCrossrefGoogle Scholar

Murphy, K. P. (2012): Machine learning: a probabilistic perspective, Cambridge, MA: MIT Press.Google Scholar

Nabney, I. (2002): NETLAB: algorithms for pattern recognition, Springer.Google Scholar

Neuneier, R., F. Hergert, W. Finnoff, and D. Ormoneit (1994): “Estimation of conditional densities: a comparison of neural network approaches,” in *International Conference on Artificial Neural Networks*, National Cheng Kung University, Taiwan: Springer, 689–692.Google Scholar

Opgen-Rhein, R. and K. Strimmer (2007): “From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data,” BMC Syst. Biol., 1.Google Scholar

Pokhilko, A., A. Fernández, K. Edwards, M. Southern, K. Halliday, and A. Millar (2012): “The clock gene circuit in *Arabidopsis* includes a repressilator with additional feedback loops,” Mol. Syst. Biol., 8, 574.PubMedGoogle Scholar

Pokhilko, A., S. Hodge, K. Stratford, K. Knox, K. Edwards, A. Thomson, T. Mizuno, and A. Millar (2010): “Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model,” Mol. Syst. Biol., 6.CrossrefGoogle Scholar

Pokhilko, A., P. Mas, A. J. Millar, et al. (2013): “Modeling the widespread effects of TOC1 signaling on the plant circadian clock and its outputs,” BMC Syst. Biol., 7, 1–12.Google Scholar

Rasmussen, C. E., R. M. Neal, G. E. Hinton, D. van Camp, M. Revow, Z. Ghahramani, R. Kustra, and R. Tibshirani (1996): “The DELVE manual,” URL http://www.cs.toronto.edu/delve.

Rasmussen, C. E. (1996): Evaluation of Gaussian processes and other methods for non-linear regression, Ph.D. thesis, Citeseer.Google Scholar

Rasmussen, C. and C. Williams (2006): Gaussian processes for machine learning, volume 1, MA: MIT press Cambridge.Google Scholar

Rogers, S. and M. Girolami (2005): “A Bayesian regression approach to the inference of regulatory networks from gene expression data,” Bioinformatics, 21, 3131–3137.PubMedCrossrefGoogle Scholar

Schäfer, J. and K. Strimmer (2005): “A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics,” Stat. Appl. Genet. Mol. Biol., 4.PubMedGoogle Scholar

Smith, M. and R. Kohn (1996): “Nonparametric regression using Bayesian variable selection,” J Econometrics, 75, 317–343.CrossrefGoogle Scholar

Solak, E., R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E. Rasmussen (2002): “Derivative observations in Gaussian process models of dynamic systems,” Advances in Neural Information Processing Systems, MIT Press: Vancouver, Canada, 1033–1040.Google Scholar

Tibshirani, R. (1995): “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Series B, 58, 267–288.Google Scholar

TiMet (2014): “The TiMet Project - Linking the clock to metabolism: URL http://timing-metabolism.eu.

Tipping, M. and A. Faul (2003): “Fast marginal likelihood maximisation for sparse Bayesian models,” in Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, 1, 3–6.Google Scholar

Tipping, M. (2001): “Spare Bayesian learning and the relevance vector machine,” Journal of Machine Learning Research, 1, 211–244.Google Scholar

Vyshemirsky, V. and M. Girolami (2008): “Bayesian ranking of biochemical system models,” Bioinformatics, 24, 833–839.CrossrefPubMedGoogle Scholar

Weirauch, M. T., A. Cote, R. Norel, M. Annala, Y. Zhao, T. R. Riley, J. Saez-Rodriguez, T. Cokelaer, A. Vedenko, S. Talukder, DREAM5 Consortium, Bussemaker, H. J., Morris, Q. D., Bulyk, M. L., Stolvitzky, G, and T. R. Hughes (2013): “Evaluation of methods for modeling transcription factor sequence specificity,” Nat. Biotechnol., 31, 126–134.CrossrefGoogle Scholar

Werhli, A. V., M. Grzegorczyk, and D. Husmeier (2006): “Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks,” Bioinformatics, 22, 2523–2531.PubMedCrossrefGoogle Scholar

Wilkinson, D. J. (2009): “Stochastic modeling for quantitative description of heterogeneous biological systems,” Nat. Rev. Genet., 10, 122–133.CrossrefGoogle Scholar

Wilkinson, D. (2011): Stochastic modeling for systems biology, volume 44, Taylor & Francis, Boca Raton, FL: CRC press.Google Scholar

Zoppoli, P., S. Morganella, and M. Ceccarelli (2010): “TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by ab information theoretic approach,” BMC Bioinformatics, 11.CrossrefGoogle Scholar

Zou, H. and T. Hastie (2005): “Regularization and variable selection via the Elastic Net,” J. R. Stat. Soc. Series B, 67, 301–320.CrossrefGoogle Scholar

## Comments (0)