Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

6 Issues per year


IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 13, Issue 6

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

When is Menzerath-Altmann law mathematically trivial? A new approach

Ramon Ferrer-i-Cancho
  • Corresponding author
  • Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antoni Hernández-Fernández
  • Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain
  • Departament de Lingüística General, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona (Catalonia), Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaume Baixeries
  • Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Dębowski
  • Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, 01-248 Warszawa, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ján Mačutek
  • Department of Applied Mathematics and Statistics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-02 | DOI: https://doi.org/10.1515/sagmb-2013-0034

Abstract

Menzerath’s law, the tendency of Z (the mean size of the parts) to decrease as X (the number of parts) increases, is found in language, music and genomes. Recently, it has been argued that the presence of the law in genomes is an inevitable consequence of the fact that Z=Y/X, which would imply that Z scales with X as Z∼1/X. That scaling is a very particular case of Menzerath-Altmann law that has been rejected by means of a correlation test between X and Y in genomes, being X the number of chromosomes of a species, Y its genome size in bases and Z the mean chromosome size. Here we review the statistical foundations of that test and consider three non-parametric tests based upon different correlation metrics and one parametric test to evaluate if Z∼1/X in genomes. The most powerful test is a new non-parametric one based upon the correlation ratio, which is able to reject Z∼1/X in nine out of 11 taxonomic groups and detect a borderline group. Rather than a fact, Z∼1/X is a baseline that real genomes do not meet. The view of Menzerath-Altmann law as inevitable is seriously flawed.

Keywords: genomes; Menzerath-Altmann law; Monte Carlo methods; power-laws

References

  • Altmann, G. (1980): “Prolegomena to Menzerath’s law,” Glottometrika 2, 1–10.Google Scholar

  • Baixeries, J., A. Hernández-Fernández and R. Ferrer-i-Cancho (2012): “Random models of Menzerath-Altmann law in genomes,” Biosystems, 107, 167–173.Web of ScienceGoogle Scholar

  • Baixeries, J., A. Hernández-Fernández, N. Forns and R. Ferrer-i-Cancho (2013): “The parameters of Menzerath-Altmann law in genomes,” J. Quant. Linguistics, 20, 94–104.CrossrefWeb of ScienceGoogle Scholar

  • Boroda, M. G. and G. Altmann (1991): “Menzerath’s law in musical texts,” Musikometrika, 3, 1–13.Google Scholar

  • Cameron, A. C. and P. K. Trivedi (2009): Microeconometrics: methods and applications, Cambridge: Cambridge University Press.Google Scholar

  • Conover, W. J. (1999): Practical nonparametric statistics, New York: Wiley, 3rd edition.Google Scholar

  • Cramer, I. M. (2005): “The parameters of the Altmann-Menzerath law,” J. Quant. Linguistics, 12, 41–52.CrossrefWeb of ScienceGoogle Scholar

  • Crathorne, A. R. (1922): “Calculation of the correlation ratio,” J. Am. Stat. Assoc., 18, 394–396.CrossrefGoogle Scholar

  • DeGroot, M. H. and M. J. Schervish (2012): Probability and statistics, Boston: Wiley, 4th edition.Google Scholar

  • Dunn, M., S. J. Greenhill, S. C. Levinson and R. D. Gray (2011): “Evolved structure of language shows lineage-specific trends in word-order universals,” Nature, 473, 79–82.Web of ScienceGoogle Scholar

  • Ferrer-i-Cancho, R. and N. Forns (2009): “The self-organization of genomes,” Complexity, 15, 34–36.Web of ScienceGoogle Scholar

  • Ferrer-i-Cancho, R., J. Baixeries, and A. Hernández-Fernández (2013a): “Erratum to ‘Random models of Menzerath-Altmann law in genomes’ (BioSystems 107 (3), 167–173),” Biosystems, 111, 216–217.Web of ScienceGoogle Scholar

  • Ferrer-i-Cancho, R., N. Forns, A. Hernández-Fernández, G. Bel-Enguix and J. Baixeries (2013b): “The challenges of statistical patterns of language: the case of Menzerath’s law in genomes,” Complexity, 18, 11–17.Web of ScienceCrossrefGoogle Scholar

  • Hernández-Fernández, A., J. Baixeries, N. Forns and R. Ferrer-i-Cancho (2011): “Size of the whole versus number of parts in genomes,” Entropy, 13, 1465–1480.CrossrefWeb of ScienceGoogle Scholar

  • Khanin, R. and E. Wit (2006): “How scale-free are biological networks,” J. Comput. Biol., 13, 810–818.CrossrefGoogle Scholar

  • Kolmogorov, A. N. (1956): Foundations of the theory of probability, New York: Chelsea Publishing Company, 2nd edition.Google Scholar

  • Kruskal, W. H. (1958): “Ordinal measures of association,” J. Am. Stat. Assoc., 53, 814–861.CrossrefGoogle Scholar

  • Li, W. (1992): “Random texts exhibit Zipf’s-law-like word frequency distribution,” IEEE T. Inform. Theory, 38, 1842–1845.CrossrefGoogle Scholar

  • Li, W. (2012): “Menzerath’s law at the gene-exon level in the human genome,” Complexity, 17, 49–53.Web of ScienceGoogle Scholar

  • May, R. M. and M. P. H. Stumpf (2000): “Species-area relations in tropical forests,” Science, 290, 2084–2086.Google Scholar

  • McCowan, B., L. R. Doyle, J. M. Jenkins and S. F. Hanser (2005): “The appropriate use of Zipf’s law in animal communication studies,” Anim. Behav., 69, F1–F7.Google Scholar

  • Menzerath, P. (1954): Die Architektonik des deutschen Wortschatzes, Bonn: Dümmler.Google Scholar

  • Miller, G. A. (1968): Introduction. In: The psycho-biology of language: an introduction to dynamic psychology (by G. K. Zipf), Cambridge, MA, USA: MIT Press, v–x.Google Scholar

  • Miller, G. A. and N. Chomsky (1963): Finitary models of language users. In: Luce, R. D., Bush, R., and Galanter, E. (Eds.), Handbook of mathematical psychology, volume 2, New York: Wiley, 419–491.Google Scholar

  • Poirier, D. J. (1995): Intermediate statistics and econometrics: a comparative approach, Cambridge: MIT Press.Google Scholar

  • Ritz, C. and J. C. Streibig (2008): Nonlinear regression with R, New York: Springer.Google Scholar

  • Sokal, R. R. and F. J. Rohlf (1995): Biometry. The principles and practice of statistics in biological research, New York: W. H. Freeman and Co., 3rd edition.Google Scholar

  • Solé, R. V. (2010): “Genome size, self-organization and DNA’s dark matter,” Complexity, 16, 20–23.CrossrefWeb of ScienceGoogle Scholar

  • Stumpf, M. P. H. and P. J. Ingram (2005): “Probability models for degree distributions of protein interaction networks,” Europhys. Lett., 71, 152.Google Scholar

  • Stumpf, M. P. H. and M. A. Porter (2012): “Critical truths about power laws,” Science, 335, 665–666.Web of ScienceGoogle Scholar

  • Stumpf, M., P. Ingram, I. Nouvel and C. Wiuf (2005): “Statistical model selection methods applied to biological network data,” Trans. Comp. Syst. Biol., 3, 65–77.Google Scholar

  • Suzuki, R., P. L. Tyack, and J. Buck (2005): “The use of Zipf’s law in animal communication analysis,” Anim. Behav., 69, 9–17.Google Scholar

  • Tanaka, R., T.-M. Yi and J. Doyle (2005): “Some protein interaction data do not exhibit power law statistics,” FEBS Letters, 579, 5140–5144.Google Scholar

  • Teupenhayn, R. and G. Altmann (1984): “Clause length and Menzerath’s law,” Glottometrika, 6, 127–138.Google Scholar

  • Tjørve, E. (2003): “Shapes and functions of species-area curves: a review of possible models,” J. Biogeogr., 30, 823–832.Web of ScienceGoogle Scholar

  • Wilde, J. and H. Schwibbe (1989): Organizationsformen von Erbinformation Im Hinblick auf die Menzerathsche Regel. In: Altmann, G. and Schwibbe, M. H. (Eds.), Das Menzerathsche Gesetz in informationsverarbeitenden Systemen, Hildesheim: Olms, 92–107.Google Scholar

  • Wooldridge, J. M. (2010): Econometric analysis of cross section and panel data, Cambridge: MIT Press.Google Scholar

  • Zou, K., K. Tuncali and S. G. Silverman (2003): “Correlation and simpler linear regression,” Radiology, 227, 617–628.Google Scholar

About the article

Corresponding author: Ramon Ferrer-i-Cancho, Complexity and Quantitative Linguistics Lab, LARCA Research Group, Departament de Ciències de la Computació, Universitat Politècnica de Catalunya, Campus Nord, Edifici Omega, Jordi Girona Salgado 1-3, 08034 Barcelona (Catalonia), Spain, e-mail:


Published Online: 2014-12-02

Published in Print: 2014-12-01


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 13, Issue 6, Pages 633–644, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2013-0034.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ramon Ferrer-i-Cancho and Michael S. Vitevitch
Journal of the Association for Information Science and Technology, 2018
[2]
Ramon Ferrer-i-Cancho
Journal of Quantitative Linguistics, 2018, Volume 25, Number 3, Page 207
[3]
Morgan L. Gustison and Thore J. Bergman
Journal of Language Evolution, 2017, Volume 2, Number 1, Page 20
[4]
Ramon Ferrer-I-Cancho and Carlos Gómez-Rodríguez
Complexity, 2016, Volume 21, Number S2, Page 320

Comments (0)

Please log in or register to comment.
Log in