Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido


IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 14, Issue 2

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

Bayesian inference for Markov jump processes with informative observations

Andrew Golightly / Darren J. Wilkinson
Published Online: 2015-01-15 | DOI: https://doi.org/10.1515/sagmb-2014-0070

Abstract

In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis.

Keywords: chemical Langevin equation (CLE); linear noise approximation (LNA); Markov jump process (MJP); particle marginal Metropolis-Hastings (PMMH); sequential Monte Carlo (SMC); stochastic kinetic model (SKM)

References

  • Andrieu, C. and G. O. Roberts (2009): “The pseudo-marginal approach for efficient computation,” Ann. Stat., 37, 697–725.Google Scholar

  • Andrieu, C., A. Doucet and R. Holenstein (2009): Particle Markov chain Monte Carlo for efficient numerical simulation. In: L’Ecuyer, P., Owen, A. B., (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2008, Spinger-Verlag: Berlin Heidelberg, pp. 45–60.Google Scholar

  • Andrieu, C., A. Doucet and R. Holenstein (2010): “Particle Markov chain Monte Carlo methods (with discussion),” J. R. Statist. Soc. B, 72, 1–269.Google Scholar

  • Bailey, N. T. J. (1964): The Elements of stochastic processes with applications to the natural sciences, Wiley: New York.Google Scholar

  • Bailey, N. T. J. (1975): The mathematical theory of infectious diseases and its applications, 2nd edition, Hafner Press [Macmillan Publishing Co., Inc.]: New York.Google Scholar

  • Beaumont, M. A. (2003): “Estimation of population growth or decline in genetically monitored populations,” Genetics, 164, 1139–1160.Google Scholar

  • Boys, R. J. and P. R. Giles (2007): “Bayesian inference for stochastic epidemic models with time-inhomogeneous removal rates,” J. Math. Biol., 55, 223–247.Web of ScienceGoogle Scholar

  • Boys, R. J., D. J. Wilkinson and T. B. L. Kirkwood (2008): “Bayesian inference for a discretely observed stochastic kinetic model,” Stat. Comput., 18, 125–135.CrossrefGoogle Scholar

  • Del Moral, P. (2004): Feynman-Kac Formulae: Genealogical and interacting particle systems with applications, Springer: New York.Google Scholar

  • Del Moral, P. and L. M. Murray (2014): “Sequential Monte Carlo with highly informative observations,” http://arxiv.org/abs/1405.4081.

  • Delyon, B. and Y. Hu (2006): “Simulation of conditioned diffusion and application to parameter estimation,” Stoch. Proc. Appl., 116, 1660–1675.Google Scholar

  • Doucet, A., M. K. Pitt and R. Kohn (2014): “Efficient implementation of Markov Chain Monte Carlo when using an unbiased likelihood estimator,” http://arxiv.org/pdf/1210.1871v3.pdf.

  • Durham, G. B. and R. A. Gallant (2002): “Numerical techniques for maximum likelihood estimation of continuous time diffusion processes,” J. Bus. Econ. Stat., 20, 279–316.Google Scholar

  • Elf, J. and M. Ehrenberg (2003): “Fast evolution of fluctuations in biochemical networks with the linear noise approximation,” Genome Res., 13, 2475–2484.Google Scholar

  • Fan, Y. and C. R. Shelton (2008): “Sampling for approximate inference in continuous time bayesian networks,” in Tenth International Symposium on Artificial Intelligence and Mathematics. Electronic proceedings, see http://isaim2008.unl.edu

  • Fearnhead, P. (2008): “Computational methods for complex stochastic systems: a review of some alternatives to MCMC,” Stat. Comput., 18, 151–171.CrossrefWeb of ScienceGoogle Scholar

  • Fearnhead, P., V. Giagos and C. Sherlock (2014): “Inference for reaction networks using the linear noise approximation,” Biometrics, 70, 457–466.Web of ScienceGoogle Scholar

  • Feller, W. (1952): “The parabolic differential equations and the associated semigroups of transformations,” Ann Math., 55, 468–519.Google Scholar

  • Ferm, L., P. Lötstedt and A. Hellander (2008): “A hierarchy of approximations of the master equation scaled by a size parameter,” J. Sci. Comput., 34, 127–151.Web of ScienceGoogle Scholar

  • Gillespie, D. T. (1977): “Exact stochastic simulation of coupled chemical reactions,” J. Phys. Chem., 81, 2340–2361.Google Scholar

  • Gillespie, D. T. (1992): “A rigorous derivation of the chemical master equation,” Phys A, 188, 404–425.Google Scholar

  • Gillespie, D. T. (2000): “The chemical langevin equation,” J. Chem. Phys., 113, 297–306.Google Scholar

  • Golightly, A. and D. J. Wilkinson (2005): “Bayesian inference for stochastic kinetic models using a diffusion approximation,” Biometrics, 61, 781–788.Google Scholar

  • Golightly, A. and D. J. Wilkinson (2011): “Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo,” Interface Focus, 1, 807–820.Google Scholar

  • Golightly, A., D. A. Henderson and C. Sherlock (2014): “Delayed acceptance particle mcmc for exact inference in stochastic kinetic models,” Stat. Comput. DOI. 10.1007/s11222-014-9469-X. http://dx.doi.org/10.0007/s11222-014-9496-X.Crossref

  • Gordon, N. J., D. J. Salmond and A. F. M. Smith (1993): “Novel approach to nonlinear/non-gaussian bayesian state estimation,” IEE Proceedings-F, 140, 107–113.Google Scholar

  • Hajiaghayi, M., B. Kirkpatrick, L. Wang and A. Bouchard-Côté (2014): “Efficient continuous-time markov chain estimation,” in Proceedings of the 31st International Conference on Machine Learning. Journal of Machine Learning (JMLR), 32.Google Scholar

  • Kearns, D. B. and R. Losick (2005): “Cell population heterogeneity during growth of bacillus subtilis,” Genes Dev., 19, 3083–3094.PubMedGoogle Scholar

  • Komorowski, M., B. Finkenstadt, C. Harper and D. Rand (2009): “Bayesian inference of biochemical kinetic parameters using the linear noise approximation,” BMC Bioinformatics, 10, 343.Web of ScienceGoogle Scholar

  • Kurtz, T. G. (1970): “Solutions of ordinary differential equations as limits of pure jump Markov processes,” J. Appl. Probab., 7, 49–58.Google Scholar

  • Lewis, P. A. W. and G. S. Shedler (1979): “Simulation of a nonhomogeneous poisson process by thinning,” Naval Res. Logist. Q., 26, 401–413.Google Scholar

  • Lin, M., R. Chen and J. S. Liu (2013): “Lookahead strategies for sequential Monte Carlo,” Stat. Sci., 28, 69–94.Web of ScienceGoogle Scholar

  • Liu, J. S. and R. Chen (1995): “Blind deconvolution via sequential imputations,” J. Am. Stat. Assoc., 90, 567–576.Google Scholar

  • O’Neill, P. D. and G. O. Roberts (1999): “Bayesian inference for partially observed stochastic epidemics,” J. R. Statist. Soc. A., 162, 121–129.Google Scholar

  • Petzold, L. (1983): “Automatic selection of methods for solving stiff and non-stiff systems of ordinary differential equations,” SIAM J. Sci. Stat. Comput., 4, 136–148.CrossrefGoogle Scholar

  • Pitt, M. K. and N. Shephard (1999): “Filtering via simulation: auxiliary particle filters,” J. Am. Stat. Assoc., 446, 590–599.Google Scholar

  • Pitt, M. K., R. dos Santos Silva, P. Giordani and R. Kohn (2012): “on some properties of markov chain monte carlo simulation methods based on the particle filter,” J. Econometrics, 171, 134–151.Web of ScienceGoogle Scholar

  • Schauer, M., F. van der Meulen and H. van Zanten (2014): “Guided proposals for simulating multi-dimensional diffusion bridges,” http://arxiv.org/abs/1311.3606.

  • Sherlock, C., A. Golightly and C. S. Gillespie (2014): “Bayesian inference for hybrid discrete-continuous systems biology models,” Inverse Problems, 30:114005.Google Scholar

  • Sherlock, C., A. Thiery, G. O. Roberts and J. S. Rosenthal (2013): “On the Effciency of pseudo-marginal random walk metropolis algorithms,” http://arxiv.org/abs/1309.7209.Web of Science

  • Sonenshein, A. L., H. J. A. and R. Losick, Eds. (2002): Bacillus subtilis and its closest relatives, Washington DC, USA: ASM Press.Google Scholar

  • Stramer, O. and J. Yan (2007): “Asymptotics of an efficient monte carlo estimation for the transition density of diffusion processes,” Methodol. Comput. Appl. Prob., 9, 483–496.Web of ScienceCrossrefGoogle Scholar

  • van Kampen, N. G. (2001): Stochastic processes in physics and chemistry, Amsterdam, The Netherlands: North-Holland.Google Scholar

  • Wilkinson, D. J. (2009): “Stochastic modelling for quantitative description of heterogeneous biological systems,” Nat. Rev. Genet., 10, 122–133.CrossrefWeb of ScienceGoogle Scholar

  • Wilkinson, D. J. (2011): Parameter inference for stochastic kinetic models of bacterial gene regulation: a bayesian approach to systems biology (with discussion). In: Bayesian statistics 9, Bernardo, J. M. E. A. (Ed.), Oxford: OUP, pp. 679–706.Google Scholar

  • Wilkinson, D. J. (2012): Stochastic modelling for systems biology, 2nd edition, Boca Raton, Florida: Chapman & Hall/CRC Press.Google Scholar

About the article

Corresponding author: Andrew Golightly, School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle-Upon-Tyne, NE1 7RU, UK, e-mail:


Published Online: 2015-01-15

Published in Print: 2015-04-01


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 14, Issue 2, Pages 169–188, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2014-0070.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Elisabeth Roesch and Michael P. H. Stumpf
Royal Society Open Science, 2019, Volume 6, Number 10, Page 190747
[2]
Błażej Miasojedow and Wojciech Niemiro
Statistics & Probability Letters, 2016, Volume 113, Page 1
[3]
Colin S. Gillespie and Andrew Golightly
The Journal of Chemical Physics, 2019, Volume 150, Number 22, Page 224103
[4]
Andrew Golightly and Chris Sherlock
Statistics and Computing, 2019, Volume 29, Number 5, Page 1149
[5]
Andrew Golightly, Emma Bradley, Tom Lowe, and Colin S. Gillespie
Computational Statistics & Data Analysis, 2019
[6]
Andrew Golightly and Theodore Kypraios
Statistics and Computing, 2017
[7]
Sarah Filippi, Chris P. Barnes, Paul D.W. Kirk, Takamasa Kudo, Katsuyuki Kunida, Siobhan S. McMahon, Takaho Tsuchiya, Takumi Wada, Shinya Kuroda, and Michael P.H. Stumpf
Cell Reports, 2016, Volume 15, Number 11, Page 2524

Comments (0)

Please log in or register to comment.
Log in