Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido

6 Issues per year

IMPACT FACTOR 2017: 0.812
5-year IMPACT FACTOR: 1.104

CiteScore 2017: 0.86

SCImago Journal Rank (SJR) 2017: 0.456
Source Normalized Impact per Paper (SNIP) 2017: 0.527

Mathematical Citation Quotient (MCQ) 2017: 0.04

See all formats and pricing
More options …
Volume 14, Issue 3


Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

CSI: a nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data

Christopher A. Penfold / Ahmed Shifaz / Paul E. Brown / Ann Nicholson / David L. Wild
Published Online: 2015-05-30 | DOI: https://doi.org/10.1515/sagmb-2014-0082


Here we introduce the causal structure identification (CSI) package, a Gaussian process based approach to inferring gene regulatory networks (GRNs) from multiple time series data. The standard CSI approach infers a single GRN via joint learning from multiple time series datasets; the hierarchical approach (HCSI) infers a separate GRN for each dataset, albeit with the networks constrained to favor similar structures, allowing for the identification of context specific networks. The software is implemented in MATLAB and includes a graphical user interface (GUI) for user friendly inference. Finally the GUI can be connected to high performance computer clusters to facilitate analysis of large genomic datasets.

Keywords: Bayesian; Gaussian process; gene regulatory networks


  • Greenfield, A., A. Madar, H. Ostrer and R. Bonneau (2010): “DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models,” PLoS One, 5, e13397.Google Scholar

  • Hickman, R., C. Hill, C. A. Penfold, E. Breeze, L. Bowden, J. Moore, P. Zhang, A. Jackson, E. Cooke, F. Bewicke-Copley, A. Mead, J. Beynon, D. L. Wild, K. Denby, S. Ott and V. Buchanan-Wollaston (2013): “A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves,” Plant J., 75, 26–39.CrossrefPubMedGoogle Scholar

  • Kent, N., S. Adams, A. Moorhouse and K. Paszkiewicz (2011): “Chromatin particle spectrum analysis: a method for comparative chromatin structure analysis using paired-end mode next-generation dna sequencing,” Nucleic Acid. Res., 39, e26.Google Scholar

  • Klemm, S. L. (2008): Causal structure identification in nonlinear dynamical systems, MPhil thesis, Department of Engineering, University of Cambridge, UK.Google Scholar

  • Penfold, C. A. and D. L. Wild (2011): “How to infer gene networks from expression profiles, revisited,” J. R. Soc. Interface. Focus, 1, 857–870.Google Scholar

  • Penfold, C. A., V. Buchanan-Wollaston, K. Denby and D. L. Wild (2012): “Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks,” Bioinformatics, 28, i233–i241.Web of ScienceGoogle Scholar

  • Penfold, C, Millar, J, and Wild, D (2015). Inferring orthologous gene regulatory networks using interspecies data fusion. Doi 10.1093/bioinformatics/btv267.CrossrefGoogle Scholar

  • Prill, R. J., D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alexopoulos, X. Xue, N. D. Clarke, G. Altan-Bonnet and G. Stolovitzky (2010): “Towards a rigorous assessment of systems biology models: the DREAM3 challenges,” PLoS One, 5, e9202.Google Scholar

  • Quinonero-Candela, J., C. E. Ramussen and C. K. I. Williams (2005): “Approximation methods for Gaussian process regression,” J. Mach. Learn. Res., 6, 1939–1959.Google Scholar

  • Snelson, E. and Z. Ghahramani (2006): Sparse Gaussian processes using pseudo-inputs. In: Weiss, Y., Schölkopf, B. and Platt, J. (Eds.), Advances in neural information processing systems 18, Cambridge, MA: MIT Press, pp. 1257–1264.Google Scholar

About the article

Corresponding author: David L. Wild, Systems Biology Centre, University of Warwick, Coventry, UK, CV4 7AL, e-mail:

Published Online: 2015-05-30

Published in Print: 2015-06-01

Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 14, Issue 3, Pages 307–310, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2014-0082.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Christopher A Penfold, Anastasiya Sybirna, John E Reid, Yun Huang, Lorenz Wernisch, Zoubin Ghahramani, Murray Grant, and M Azim Surani
Bioinformatics, 2018, Volume 34, Number 17, Page i1005
Jigar S. Desai, Ryan C. Sartor, Lovely Mae Lawas, S. V. Krishna Jagadish, and Colleen J. Doherty
Scientific Reports, 2017, Volume 7, Number 1
Thalia E. Chan, Michael P.H. Stumpf, and Ann C. Babtie
Cell Systems, 2017, Volume 5, Number 3, Page 251
Ann C. Babtie and Michael P. H. Stumpf
Journal of The Royal Society Interface, 2017, Volume 14, Number 133, Page 20170237

Comments (0)

Please log in or register to comment.
Log in