Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Sanguinetti, Guido


IMPACT FACTOR 2018: 0.536
5-year IMPACT FACTOR: 0.764

CiteScore 2018: 0.49

SCImago Journal Rank (SJR) 2018: 0.316
Source Normalized Impact per Paper (SNIP) 2018: 0.342

Mathematical Citation Quotient (MCQ) 2018: 0.02

Online
ISSN
1544-6115
See all formats and pricing
More options …
Volume 14, Issue 5

Issues

Volume 10 (2011)

Volume 9 (2010)

Volume 6 (2007)

Volume 5 (2006)

Volume 4 (2005)

Volume 2 (2003)

Volume 1 (2002)

A parametric approach to kinship hypothesis testing using identity-by-descent parameters

Manuel García-Magariños
  • Corresponding author
  • Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences, 1432 As, Norway
  • Departamento de Matemáticas, Facultade de Informática, Universidade da Coruña, 15071 A Coruña, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thore Egeland
  • Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences, 1432 As, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ignacio López-de-Ullibarri
  • Departamento de Matemáticas, Facultade de Informática, Universidade da Coruña, 15071 A Coruña, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nils L. Hjort / Antonio Salas
  • Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-28 | DOI: https://doi.org/10.1515/sagmb-2014-0080

Abstract

There is a large number of applications where family relationships need to be determined from DNA data. In forensic science, competing ideas are in general verbally formulated as the two hypotheses of a test. For the most common paternity case, the null hypothesis states that the alleged father is the true father against the alternative hypothesis that the father is an unrelated man. A likelihood ratio is calculated to summarize the evidence. We propose an alternative framework whereby a model and the hypotheses are formulated in terms of parameters representing identity-by-descent probabilities. There are several advantages to this approach. Firstly, the alternative hypothesis can be completely general. Specifically, the alternative does not need to specify an unrelated man. Secondly, the parametric formulation corresponds to the approach used in most other applications of statistical hypothesis testing and so there is a large theory of classical statistics that can be applied. Theoretical properties of the test statistic under the null hypothesis are studied. An extension to trios of individuals has been carried out. The methods are exemplified using simulations and a real dataset of 27 Spanish Romani individuals.

This article offers supplementary material which is provided at the end of the article.

Keywords: asymptotical distribution; hypothesis testing; identity-by-descent (IBD); relationship testing; single nucleotide polymorphisms (SNP)

References

  • Amorim, A. (2008): “A cautionary note on the evaluation of genetic evidence from uniparentally transmitted markers,” Forensic Sci. Int.-Gen., 2, 376–378.Web of ScienceGoogle Scholar

  • Astle, W. and D. J. Balding (2009): “Population structure and cryptic relatedness in genetic association studies,” Stat. Sci., 24, 451–471.CrossrefWeb of ScienceGoogle Scholar

  • Baur, M. P., R. C. Elston, H. Gurtler, K. Henningsen, K. Hummel, H. Matsumoto, W. Mayr, J. W. Moris, L. Niejenhuis, H. Polesky, D. Salmon, J. Valentin and R. Walkers (1986): “No fallacies in the formulation of the paternity index,” Am. J. Hum. Genet., 39, 528–536.Google Scholar

  • Brenner, C. H. and B. S. Weir (2003): “Issues and strategies in the DNA identification of World Trade Center victims,” Theor. Popul. Biol., 63, 173–178.CrossrefGoogle Scholar

  • Buckleton, J. S., M. Krawczak and B. S. Weir (2011): “The interpretation of lineage markers in forensic DNA testing,” Forensic Sci. Int.-Gen., 5, 78–83.Google Scholar

  • Chakraborty, R. and L. Jin (1993): “Determination of relatedness between individuals using DNA fingerprinting,” Hum. Biol., 65, 875–895.PubMedGoogle Scholar

  • Claeskens, G. and N. L. Hjort (2008): Model selection and model averaging, Cambridge, UK: Cambridge University Press.Google Scholar

  • Cotterman, C. (1940): A calculus for statistico-genetics, Ph.D. thesis, Ohio State University.Google Scholar

  • Davila, S., V. J. Wright, C. C. Khor, K. S. Sim, A. Binder, W. B. Breunis, D. Inwald, S. Nadel, H. Betts, E. D. Carrol, R. de Groot, P. W. Hermans, J. Hazelzet, M. Emonts, C. C. Lim, T. W. Kuijpers, F. Martinon-Torres, A. Salas, W. Zenz, M. Levin and M. L. Hibberd; International Meningococcal Genetics Consortium (2010): “Genome-wide association study identifies variants in the CFH region associated with host susceptibility to meningococcal disease,” Nat. Genet., 42, 772–776.CrossrefWeb of ScienceGoogle Scholar

  • Devlin, B. (1993): “Forensic inference from genetic markers,” Stat. Methods Med. Res., 2, 241–262.CrossrefPubMedGoogle Scholar

  • Devlin, B. and K. Roeder (1999): “Genomic control for association studies,” Biometrics, 55, 997–1004.CrossrefPubMedGoogle Scholar

  • Egeland, T., N. Pinto and M. Vigeland (2014): “A general approach to power calculation for relationship testing,” Forensic Sci. Int.-Gen., 9, 186–190.Web of ScienceGoogle Scholar

  • Elston, R. C. and J. Stewart (1971): “A general model for the genetic analysis of pedigree data,” Hum. Hered., 21, 523–542.PubMedCrossrefGoogle Scholar

  • Epstein, M. P., W. L. Duren and M. Boehnke (2000): “Improved inference of relationship for pairs of individuals,” Am. J. Hum. Genet., 67, 1219–1231.CrossrefGoogle Scholar

  • Essen-Moller, E. (1938): “Die beweiskraft der ahnlichkert in vaterschaftsnachweis; theoretische grandlagen,” Mitt Anthr Gesellschaft in Wien, 68, 9–53.Google Scholar

  • Gjertson, D., C. Brenner, M. Baur, A. Carracedo, F. Guidet, J. Luque, R. Lessig, W. R. Mayr, V. L. Pascali, M. Prinz, P. M. Schneider and N. Morling (2007): “ISFG: Recommendations on biostatistics in paternity testing,” Forensic Sci. Int.-Gen., 1, 223–231.Web of ScienceGoogle Scholar

  • Gómez-Carballa, A., J. Pardo-Seco, L. Fachal, A. Vega, M. Cebey, N. Martinón-Torres and A. Salas (2013): “Indian signatures in the westernmost edge of the European Romani diaspora: new insight from mitogenomes,” PLos One, 8, e75397.Web of ScienceGoogle Scholar

  • Jacquard, A. (1972): “Genetic information given by a relative,” Biometrics, 28, 1101–1114.CrossrefPubMedGoogle Scholar

  • Katki, H. A., C. L. Sanders, B. I. Graubard and A. W. Bergen (2010): “Using DNA fingerprints to infer familial relationships within NHANES III households,” J. Am. Stat. Assoc., 105, 552–563.CrossrefWeb of ScienceGoogle Scholar

  • Kidd, K. K., A. J. Pakstis, W. C. Speed, E. L. Grigorenko, S. L. B. Kajuna, N. J. Karoma, S. Kungulilo, J. J. Kim, R. B. Lu, A. Odunsi, F. Okonofua, J. Parnas, L. O. Schulz, O. V. Zhukova and J. R. Kidd (2006): “Developing a snp panel for forensic identification of individuals,” Forensic Sci. Int., 164, 20–32.Google Scholar

  • Kyriazopoulou-Panagiotopoulou, S., D. K. Haghighi, S. J. Aerni, A. Sundquist, S. Bercovici and S. Batzoglou (2011): “Reconstruction of genealogical relationships with applications to Phase III of HapMap,” Bioinformatics, 27, i333–i341.CrossrefWeb of ScienceGoogle Scholar

  • Lander, E. S. and P. Green (1987): “Construction of multilocus genetic linkage maps in humans,” Proc. Natl. Acad. Sci., 84, 2363–2367.CrossrefGoogle Scholar

  • Lareu, M. V., M. García-Magariños, C. Phillips, I. Quintela, A. Carracedo and A. Salas (2012): “Analysis of a claimed distant relationship in a deficient pedigree using high density SNP data,” Forensic Sci. Int.-Gen., 6, 350–353.Web of ScienceGoogle Scholar

  • Manichaikul, A., J. C. Mychaleckyj, S. S. Rich, K. Daly, M. Sale and W. M. Chen (2010): “Robust relationship inference in genome-wide association studies,” Bioinformatics, 26, 2867–2873.Web of SciencePubMedCrossrefGoogle Scholar

  • McPeek, M. S. and L. Sun (2000): “Statistical tests for detection of misspecified relationships by use of genome-screen data,” Am. J. Hum. Genet., 66, 1076–1094.CrossrefGoogle Scholar

  • Mendizabal, I., O. Lao, U. M. Marigorta, A. Wollstein, L. Gusmão, V. Ferak, M. Ioana, A. Jordanova, R. Kaneva, A. Kouvatsi, V. Kučinskas, H. Makukh, A. Metspalu, M. G. Netea, R. de Pablo, H. Pamjav, D. Radojkovic, S. J. Rolleston, J. Sertic, M. Macek Jr., D. Comas and M. Kayser (2012): “Reconstructing the population history of European Romani from genome-wide data,” Curr. Biol., 22, 2342–2349.Web of SciencePubMedCrossrefGoogle Scholar

  • Nelder, J. A. and R. Mead (1965): “A simplex algorithm for function minimization,” Comput. J., 7, 308–313.CrossrefGoogle Scholar

  • Phillips, C., M. García-Magariños, A. Salas, A. Carracedo and M. V. Lareu (2012): “SNPs as supplements in simple kinship analysis or as core markers in distant pairwise relationship tests: when do SNPs add value or replace well-established and powerful STR tests?” Transfus. Med. Hemoth., 39, 202–210.CrossrefWeb of ScienceGoogle Scholar

  • Presciuttini, S., C. Toni, E. Tempestini, S. Verdiani, L. Casarino, I. Spinetti, F. De Stefano, R. Domenici and J. E. Bailey-Wilson (2002): “Inferring relationships between pairs of individuals from locus heterozygosities,” BMC Genet., 3:23.CrossrefGoogle Scholar

  • R Core Team (2013): R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/.

  • Self, S. G. and K. Y. Liang (1987): “Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions,” J. Am. Stat. Assoc., 82, 605–610.CrossrefGoogle Scholar

  • Skare, O., N. Sheehan and T. Egeland (2009): “Identification of distant family relationships,” Bioinformatics, 25, 2376–2382.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Thompson, E. A. (1974): “Gene identities and multiple relationships,” Biometrics, 30, 667–680.PubMedCrossrefGoogle Scholar

  • Thompson, E. A. (1975): “The estimation of pairwise relationships,” Ann. Hum. Genet., 39, 173–188.CrossrefGoogle Scholar

  • Thompson, E. A. (1986): Pedigree analysis in human genetics, Baltimore: Johns Hopkins University Press.Google Scholar

  • Thompson, E. A. (2000): “Statistical inference from genetic data on pedigrees,” in NSF-CBMS regional conference series in probability and statistics.Google Scholar

  • Vigeland, M. D. (2013): “paramlink: Parametric linkage analysis in r. r package version 0.8-3.” URL: http://CRAN.R-project.org/package=paramlink.

  • Weir, B. S., A. D. Anderson and A. B. Hepler (2006): “Genetic relatedness analysis: modern data and new challenges,” Nat. Rev. Genet., 7, 771–780.CrossrefPubMedGoogle Scholar

  • Wilks, S. S. (1938): “The large-sample distribution of the likelihood ratio for testing composite hypotheses,” Ann. Math. Stat., 9, 60–62.CrossrefGoogle Scholar

About the article

Corresponding author: Manuel García-Magariños, Chemistry, Biotechnology and Food Science (IKBM), Norwegian University of Life Sciences, 1432 As, Norway; and Departamento de Matemáticas, Facultade de Informática, Universidade da Coruña, 15071 A Coruña, Spain, e-mail:


Published Online: 2015-10-28

Published in Print: 2015-11-01


Citation Information: Statistical Applications in Genetics and Molecular Biology, Volume 14, Issue 5, Pages 465–479, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: https://doi.org/10.1515/sagmb-2014-0080.

Export Citation

©2015 by De Gruyter.Get Permission

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Thore Egeland, Nádia Pinto, and António Amorim
Forensic Science International: Genetics, 2017, Volume 29, Page 218
[2]
Alberto Gómez-Carballa, Fabián Moreno, Vanesa Álvarez-Iglesias, Federico Martinón-Torres, Manuel García-Magariños, Jaime A. Pantoja-Astudillo, Eugenia Aguirre-Morales, Patricio Bustos, and Antonio Salas
Forensic Science International: Genetics, 2016, Volume 20, Page 81
[3]
Iván Galván-Femenía, Jan Graffelman, and Carles Barceló-i-Vidal
Molecular Ecology Resources, 2017

Comments (0)

Please log in or register to comment.
Log in